
Computed Heights of Cyclotomic Polynomials
Using algorithm 1, we were able to compute the heights of cyclotomic polynomials. Here are some
results we computed:

n A(n)
1 1

105 2
385 3

1365 4
1785 5
2805 6
3135 7
6545 9

10465 14

n A(n)
11305 23
17255 25
20615 27
26565 59
40755 359

106743 397
171717 434
255255 532
279565 1182

n A(n)
327845 31010
707455 35111
886445 44125
983535 59815

1181895 14102773
1752465 14703509
3949491 56938657
8070699 74989473

43730115 862550638890874931

We have verified that Φ1,181,895(z) is the first cyclotomic polynomial whose height exceeds its
order. Φ43,730,115(z) is the first cyclotomic polynomial we’ve discovered to have a height greater
than its order squared; however, we have yet to verify whether the same holds for any cyclotomic
polynomials of smaller order. Below are the heights of cyclotomic polynomials whose orders are
products of the first k odd prime numbers.

n factorization of n A(n)
105 3 · 5 · 7 3

1155 3 · 5 · 7 · 11 3
15015 3 · 5 · 7 · 11 · 13 23

255255 3 · 5 · 7 · 11 · 13 · 17 532
4849845 3 · 5 · 7 · 11 · 13 · 17 · 19 669606*

111546435 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 8161018310**
3234846615 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 2888582082500892851**

∗(Koshiba, 2002). ∗ ∗(Monagan, 2007).

To compute large cyclotomic polynomials, we implemented algorithm 1 using the fast Fourier
transform (FFT). To compute Φn(z) =

Φn/p(z
p)

Φn/p(z)
, we first find the smallest power of two, N , such

that N > φ(n/p) · p, the degree of the numerator. We then find a prime, q, of the form aN + 1,
and ω, an Nth root of unity modulo q. Given these parameters, we use the FFT to find Φn/p((ω

k)p)

mod q and Φn/p(ω
k) mod q, for 0 ≤ k ≤ N in O(nlg(n)) operations. We then compute for

Φn(ωk) = Φn/p((ω
k)p) ÷ Φn/p(ω

k) mod q, for 0 ≤ k ≤ n. We then apply the inverse FFT to
interpolate Φn(z) mod q.

Often the theoretical bound for A(n) exceeds our choice of prime q. In such case we solve Φn(z)
mod q for two primes, q1 and q2. We then solve for Φn(z) with the Chinese remainder Theorem.
After we have obtained a result by Chinese remaindering (call it Hn(z)), we can check that Hn(z)
is infact the correct solution by solving Hn(z)Φn

p
(z)− Φn

p
(zp) mod a third prime, q3, where Φn

p
(z)

is the polynomial that resulted from the second last division step of the algorithm. We know
Φn(z)Φn

p
(z) − Φn

p
(zp) = 0, so if we obtain that Hn(z)Φn

p
(z) − Φn

p
(zp) = 0 mod q3, then we can

assume with confidence that Hn(z) is infact Φn(z).

For polynomials of degree less than 227, we used primes q1 = 15 · 227 and q2 = 17 · 227. For degree
greater than 227, we used q1 = 10 · 238 and q2 = 15 · 238. To use the FFT for a prime q greater
than 32 bits, we needed to encode multiplication over Zq so as to avoid integer overflow while
running on a 64-bit computer. By breaking integers into their upper and lower bits, we were able
to perform arithmetic in Zq for primes q as large as 42 bits. Our 42-bit multiplication requires two
division operations.

Φ3,234,846,615(z) was particularly difficult to compute. It took 12 hours to solve, requiring 40
gigabytes of memory! As far as we know, its height is the greatest height ever computed for a
cyclotomic polynomial.

Algorithm 1. Let n = p1p2...pj, for distinct odd primes p1, p2, ..., pj, where p1 < p2 < ... < pj.
Let nk =

∏k
h=1 ph. Then nj is then simply n.

We know from lemma 2 that Φp1(z) =
∑p1−1
h=0 zh. We can then solve for Φn(z) recursively using

lemma 4. This algorithm does a sequence of polynomial divisions.

For k from 2 to j: Φnk(z) =
Φnk−1

(zp)

Φnk−1
(z)

Number of operations: O(n
2

pj
)

Algorithm 2. (Bloom)
We’ll illustrate this algorithm with an example. Consider primes p, q, r with p < q < r

By lemma 4, Φpqr(z) =
Φpq(z

r)
Φpq(z)

.
We can apply lemma 4 repeatedly:

Φpqr(z) =

[
Φp((z

r)q)
Φp(zr)

]
[

Φp(zq)
Φp(z)

] =
Φp(z

qr) · Φp(z)

Φp(zq) · Φp(zr)
=

[(Φ1((z
qr)p)

Φ1(zqr)

)(Φ1(z
p)

Φ1(z)

)]
[(Φ1((zq)p)

Φ1(zq)

)(Φ1((zr)p)
Φ1(zr)

)]

=
Φ1(zpqr) · Φ1(zp) · Φ1(zq) · Φ1(zr)

Φ1(zpq) · Φ1(zpr) · Φ1(zqp) · Φ1(z)

=
(zpqr − 1) · (zp − 1) · (zq − 1) · (zr − 1)

(zpq − 1) · (zpr − 1) · (zqr − 1) · (z − 1)

In general, we can express Φn(z) for arbitrary n = p1p2...pj in this fashion.

Φn(z) =
∏

m,mn∈N

(zm − 1)µ(mn ) =

( ∏
µ(mn )=1

(zm − 1)

)
÷

( ∏
µ(mn )=−1

(zm − 1)

)

where µ(k) is the Moebius function (µ : N → {−1, 0, 1}. µ(1) = 0 and µ(k) = 0 if k isn’t
square-free, otherwise µ(k) = 1 if k has an even number of prime factors, and µ(k) = −1 if k has
an odd number of prime factors).

We can then solve for Φn(z) as a power series evaluated up to degree φ(n)
2 , half the degree Φn(z).

Using the reciprocity of cyclotomic polynomial coefficients, we effectively know all the coeffi-
cients for a cycltomic polynomial if we’ve determined the first half. We multiply the terms in the
numerator and then divide by the terms in the denominator, all individually, so as to preserve the
sparseness of each of the terms. A product of j distinct primes p1, p2, ..., pj has 2j positive divisors.
In total, both the numerator and denominator in the equation above have 2j−1 terms of the form
zm − 1.
Number of operations: O(2jn)

Theoretical Bounds on the Height of Φn(z)

Theorem 2. (A.S.Bang, 1895) Let p, q, r be odd primes satisfying p < q < r. Then A(n) ≤ p− 1.

Theorem 3. (Bloom, 1968) Let p, q, r, s be odd primes such that p < q < r < s.
Then A(pqrs) ≤ p(pq − 1)(q − 1).

Theorem 4. (P.T. Bateman, 1982) Let n = p1p2...pj, for primes pk, 1 ≤ k ≤ j, such that 2 < p1 <
p2 < ... < pj. Then,

A(n) ≤
j−2∏
k=1

(p2j−k−1−1
k )

For example, for n = p1 · p2 · p3 · p4 · p5, A(n) ≤ p7
1 · p

3
2 · p

1
3.

Cyclotomic Polynomials

Definition 1. The nth cyclotomic polynomial, Φn(z) is defined as follows:

Φn(z) =

n−1∏
k=0

gcd(k,n)=1

(z − e2πikn).

It is the monic polynomial whose distinct φ(n) zeros are the nth complex primitive roots of unity.
Its coefficients are all integer-valued. For n > 1, the coefficients of Φn(z) are palindromic about
φ(n). That is, the coefficients read the same backwards as they do forwards. Here are the first ten
cyclotomic polynomials:

Φ1(z) = z − 1 Φ6(z) = z2 − z + 1

Φ2(z) = z + 1 Φ7(z) = z6 + z5 + z4 + z3 + z2 + z + 1

Φ3(z) = z2 + z + 1 Φ8(z) = z4 + 1

Φ4(z) = z2 + 1 Φ9(z) = z6 + z3 + 1

Φ5(z) = z4 + z3 + z2 + z + 1 Φ10(z) = z4 − z3 + z2 − z + 1

Observe that the coefficients are all -1, 0, or 1. This is true for orders up to n = 104. For n = 105,
however, we have:

Φ105(z) = 1+z+z2+z4−z5−z6−2z7−z8−z9+z12+z13+z14+z15+z16+z17−z20−z22−z24−z26

− z28 + z31 + z32 + z33 + z34 + z35 + z36 − z39 − z40 − 2z41 − z42 − z43 + z46 + z47 + z48

Definition 2. The height of Φ(n), A(n), is the maximum of the absolute values of the coefficients
of Φ(n). That is, for Φ(n) =

∑φ(n)
k=0 akz

k, A(n) = max
1≤k≤φ(n)

|ak|.

It is known that A(n) can get arbitrarily large. In fact, Paul Erdos proved the following result:

Theorem 1. For any constant c > 0 there exists n such that A(n) > nc.

The question is, how large does n have to be beforeA(n) > n? Can we find n such thatA(n) > n2?
In this poster we describe two algorithms for computing Φn(z) and we list some results of our
search for large A(n) including the first n such that A(n) > n and one n for which A(n) > n2.

fasg

Constructing Φn(z)

Here are some properties of cyclotomic polynomials that are useful in their computation.

Lemma 1. Let n > 1 be odd. Then Φ2n(z) = Φn(−z)

Lemma 2. Let p be a prime. Then Φp(z) =
∑p−1
k=0 z

p = zp−1
z−1

Lemma 3. Let n ∈ N and p be a prime. Then Φnp2(z) = Φnp(z
p)

Lemma 4. Let n ∈ N and p be a prime that does not divide n. Then Φnp(z) =
Φn(zp)
Φn(z)

The reader should check these lemmas against the examples above.

Lemma 3 provides an easy means of generating Φn(z) for arbitrary n, assuming we already have
the cyclotomic polynomials of square-free order. We present the following two algorithms to
generate Φn(z) for odd, square-free integers n:
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The Height of the 3,234,846,615th Cyclotomic Polynomial
is Big (2,888,582,082,500,892,851)


