
Algorithm 2: p-adic Lifting with Rational Reconstruction

Input: Matrix A ∈ Qn×n[z], vectorB ∈ Qn[z], polynomialm(z) ∈ Z[z].
Output: VectorX ∈ Qn[z] which satisfiesAX = B (mod m(z)).

1.Clear fractions inA andB.

2.Pick a primep which splitsm(z) and find all rootsr1, . . . , rd of m(z) modp.

3.Setk := 1, error := B and computeA−1(ri) mod p for i = 1, 2, . . . , d.
If A(rj) is not invertible (modp) then go back to step 2 and pick a new prime.

4.Loop

(a)for j = 1 to d setXk−1(rj) = A−1(rj)error(rj) mod p.
(b) InterpolateXk−1(z) ∈ Zn

p [z] from ri’s andXk−1(rj)’s.
(c)Computeerror := (error − AXk−1)/p.
(d)ObtainX (k) := X (k−1)+Xk−1p

k−1 = X0+X1×p+X2×p2+· · ·+Xk−1×pk−1.
(e)Apply rational reconstruction to recoverX ∈ Qn[z]/m(z).
(f) If m(z)|AX −B then outputX.

Theorem 2: The running time of above algorithm isO(n3d + n2d2c2 + nd2cL +
n2dcL + ndc2L + ndL2) whereL ∈ O(ndc) is the number of lifting iterations
needed,n = dim A, c = max(log ||A||∞, log ||B||∞, log n, d log(||m||∞ + 1)),
d = deg m(z).

The same remarks made about trial division apply here. The most costly part of
this algorithm is updating the error in step4(c). We implemented two variations
which reduce the cost. (SeeLift 1 andLift 2 below) Also, this algorithm doesd
Gauss eliminations in step 3 whereas the first doesLd in step2(c) which is why it
is faster for largen.

Timings (in CPU seconds) for random systems.

n Coefficient Lengthc Remark
2 digits 4 digits 8 digits 16 digits 32 digits 64 digits 128 digits

.303 .321 .340 .390 .472 .700 1.558 GE
5 .019 .029 .069 .136 .312 .643 1.412 CRT

.028 .027 .049 .102 .245 .631 1.797 Lift 1
1.947 2.185 2.375 2.744 3.623 6.210 15.317 GE

10 .050 .097 .183 .418 1.019 2.359 5.685 CRT
.058 .091 .152 .309 .803 2.084 6.384 Lift 1

16.041 17.927 20.759 26.141 37.817 71.288 186 GE
20 .167 .347 .727 1.616 4.759 12.149 30.983 CRT

.158 .276 .521 1.054 3.005 8.219 26.581 Lift 1
148 181 207 291 476 1033 2829 GE

40 .797 1.795 3.899 8.756 31.120 85.780 234 CRT
.500 .973 1.932 3.998 11.891 33.412 113 Lift 1

m(z) := z6 + z5 + z4 + z3 + z2 + z + 1, d = 6

Timings (in CPU seconds) for Dabbaghian’s systems.

file sys49 sys100 sys100b sys144 sys196 sys225 sys256 sys576 sys900 sys900b
degz(m) 4 8 4 2 2 4 4 6 8 2

k 5 24 8 4 3 5 12 7 24 4
||A||∞ 10 5 2 4 11 2 3 3 2 5
||x||∞ 45 14 1 1 229 875 2 1 2 1
CRT .144 .788 .029 .036 3.344 3.056 .155 .842 2.358 1.458
Lift 1 .109 .443 .030 .029 1.183 2.374 .174 .612 2.761 .462
Lift 2 .111 .294 .100 .163 1.973 1.678 .640 3.022 7.627 5.711
GE 109 3080 30.15 10.49 4419 769 848 2055 2265 1195

# primes 4 1 1 1 9 36 1 1 1 1
Det .293 4.159 .305 .147 6.206 4.644 3.748 53.69 338 25.74

We want to solve large linear systems involving roots of unity arising from a prob-
lem in computational group theory. For example, the complex numberi satisfies
i4 = 1. It is a primitive4th root of unity. A primitivekth root of unity is a root of
the cyclotomic polynomialmk(z). For example,i is a root ofm4(z) = z2 + 1. The
cyclotomic polynomials are of special interest because there are lots of primes for
whichmk(z) factors into distinct linear factors modulop. For example

m5(z) = z4 + z3 + z2 + z + 1 = (z − 3)(z − 4)(z − 5)(z − 9) mod 11.

The following lemma tells us how to find such primes and how to factormk(z).

Lemma: If p is a prime andk|(p− 1), thenmk(z) hasd = deg m(z) roots inZp.
Moreover, ifω is a primitivekth root of unitymod p, then

{ωi : 1 ≤ i ≤ k and gcd(i, k) = 1}

are roots ofmk(z).

We exploit this to design two efficient algorithms for solving a linear systemAX =
B involving roots of unity. The following figure describes the first algorithm:
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Evaluate A(rj) and B(rj) mod pi
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Algorithm 1: Chinese Remaindering with Rational Reconstruction

Input: Matrix A ∈ Qn×n[z], vectorB ∈ Qn[z], polynomialm(z) ∈ Z[z].
Output: VectorX ∈ Qn[z] which satisfiesAX = B (mod m(z)).

1.Clear fractions inA andB and setk := 1.

2.Loop

(a)Pick a new primepk which splitsm(z).
(b)Find all rootsr1, . . . , rd of m(z) modpk.
(c) for j = 1 to d do

SolveA(rj)Xk(rj) ≡ B(rj) modpk for Xk(rj) ∈ Zn
pk

.
If there is no solution then go back to step2(a).

(d) InterpolateXk(z) ∈ Zn
pk

[z] from pointsrj’s andXk(rj)’s.
(e)Apply Chinese remaindering to recoverX modp1 × p2 × · · · × pk.
(f) Apply rational reconstruction to recoverX ∈ Qn[z]/m(z).
(g) If m(z)|AX −B then outputX.
(h)Setk := k + 1.

Theorem 1: The running time of above algorithm isO(n2dLc + n2d2L + n3dL +
ndL2) whereL ∈ O(ndc) is the number of primes needed,n = dim A, d =
deg m(z), c = max(log ||A||∞, log ||B||∞).

The above running time does not include the trial division in step2(g) since this
step may be avoided if we use sufficiently many primes. Solving a linear system
mod pk using Gaussian elimination brings a factor ofn3, and rational reconstruc-
tion and Chinese remaindering brings a factor ofL2 which are the two main costs
of the algorithm. An improvement can be made by doing rational reconstruction
and trial division only after1, 2, 4, 8, 16, . . . primes.

Computational Algebra Group
Centre for Experimental and Constructive Mathematics
Department of Mathematics
Simon Fraser UniversityLiang Chen Michael Monagan

Solving Linear Systems of Equations Over
Cyclotomic Fields


