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W e want to solve large linear systems involving roots of unity arising from a prob-

Michael Monagan

lem In computational group theory. For example, the complex numbatisfies
i = 1. Itis a primitive4!” root of unity. A primitive k' root of unity is a root of
the cyclotomic polynomialn, (). For example; is a root ofmy(z) = 2%+ 1. The

cyclotomic polynomials are of special interest because there are lots of primes for

whichmy(z) factors into distinct linear factors modupo For example

ms(2) =2+ 2+ 2 +2+1=(2—-3)(z —4)(z —5)(z — 9) mod 11.

The following lemma tells us how to find such primes and how to faetgr: ).

Lemma: If pis a prime and|(p — 1), thenmy(z) hasd = deg m(z) roots inZ,.
Moreover, ifw is a primitivek! root of unitymod p, then

{w:1<i<kandgcd(i, k) =1}

are roots ofn(z).

We exploit this to design two efficient algorithms for solving a linear systexn—=
B Involving roots of unity. The following figure describes the first algorithm:

Solve AX = B (mod m(z))

choose primes
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solve A(r;) Xi(r;) = B(r;) overZy, X;(rj) € Z7
t\"] Pi

using Gaussian elimination for

Algorithm 1: Chinese Remaindering with Rational Reconstruction

Input: Matrix A € Q™*"[z|, vectorB € Q"|z], polynomialm/(z) € Z|z|.
Output: Vector X € Q"|z] which satisfiesAX = B (mod m(z)).

1.Clear fractions i’rA and B and set: := 1.

2.Loop

(a)Pick a new primey; which splitsm(z).

(b) Find all rootsry, . .

(c)for y =1toddo
Solve A(r;) Xy.(r;) = B(r;) modp; for Xy(r;) € Z; .
If there is no solution then go back to st&(ja).

(d) InterpolateX,.(z) € Z) [z] from pointsr;'s and X(r;)’s.

(e)Apply Chinese remaindering to recov&rmodp; X pys X - -+ X pg.

(f) Apply rational reconstruction to recovér € Q"|z]/m(z).

(9)If m(z)|AX — B then outputX.

(h) Setk =k + 1.

., 74 0f m(z) modp;.

Theorem 1 The running time of above algorithm 3(n°dLc + n*d°L + ndL +
ndL?) where L € O(ndc) is the number of primes needed,= dim A, d =
deg m(z), c = max(log || A||s, log || B||s)-

The above running time does not include the trial division in gtgp since this

step may be avoided if we use sufficiently many primes. Solving a linear system

mod p; using Gaussian elimination brings a factorof and rational reconstruc-
Chinese remaindering brings a factof.6fvhich are the two main costs

tion and
of the a
and tria

gorithm. An improvement can be made by doing rational reconstruction

division only aftet, 2,4, 8, 16, . . . primes.

@
y
G
S

»
Maplesoft

command the brilliance

Computational Algebra Group

Centre for Experimental and Constructive Mathematics
Department of Mathematics

Simon Fraser University

Algorithm 2: p-adic Lifting with Rational Reconstruction

Input: Matrix A € Q"*"|z|, vectorB € Q"[z], polynomialm/(z) € Z|z|.
Output: Vector X € Q"|z] which satisfiesAX = B (mod m(z)).

1.Clear fractions ilA andB.
2.Pick a primep which splitsm(z) and find all roots, . .., r; of m(z) modp.

3.Setk :=1, error := B and computed !(r;) mod pfori =1,2,...,d.
If A(r;) is not invertible (mod) then go back to step 2 and pick a new prime.

4.Loop
(@)for j =1todsetX; i(r;) = A~ (r;)error(r;) mod p.
(b) InterpolateX;._(z) € Z}|z| fromr;’s and X;._y(r;)’s.
(c) Computeerror := (error — AXy_1)/p.
(d)ObtainX™® = XD X, 1pF1 = X+ X, xp+Xoxp>+- -+ Xp_ xpF1L,
(e)Apply rational reconstruction to recovér € Q"|z|/m(z).
(f) If m(2)|AX — B then outputX.

Theorem 2 The running time of above algorithm 3(n’d 4 n?d*c* + nd*cL +
n*dcL + ndc’L + ndL?) where L € O(ndc) is the number of lifting iterations
neededn = dim A, ¢ = max(log || A||se, 10g || Bl|s0, log 1, dlog(||m||s + 1)),

d = deg m(z).

The same remarks made about trial division apply here. The most costly part of
this algorithm is updating the error in stefr). We implemented two variations
which reduce the cost. (Sédt 1 andLift 2 below) Also, this algorithm doesg
Gauss eliminations in step 3 whereas the first daés step2(c) which is why it

Is faster for largen.

Timings (in CPU seconds) for random systems.

n Coefficient Lengthe Remark
2 digits 4 digits 8 digits 16 digits 32 digits 64 digits 128 digits
303 .321 | .340 @ .390 472 .700 1.558 GE
5/ .019 .029 .069 .136 312 .643 1.412 | CRT
028 | .027 .049 .102 245 .631 1.797 | Lift1l
1.947| 2,185 2.375 2.744 3.623 | 6.210 15.317 GE
100 .050 .097 .183 418 @ 1.019 2.359 5685 @ CRT
058 | .091 @ .152 .309 803 | 2.084 | 6.384 | Liftl
16.041 17.927 20.759 26.141 37.817 71.288 186 GE
20 .167 .347  .727 1616 4.759 12.149 30.983 | CRT
158 | .276 | 521 1.054 3.005 8.219 @ 26.581 @ Lift1l
148 ' 181 @ 207 291 476 1033 2829 GE
400 .797 1.795 3.899 8.756 | 31.120 85.780 234 CRT
500 | 973 1932 3.998 11.891| 33.412 113 Lift 1

m(z) =2+ 22+ 24+ 22+ 22+ 24+ 1,d=6

Timings (in CPU seconds) for Dabbaghian’s systems.

file sys49 sys100 sys100b sysl44 sysl196 sys225 sys256 sys576 sys900 sys900b

deg,(m)| 4 8 4 2 2 4 4 6 8 2
k 5 24 8 4 3 5 12 7 24 4
1Al 10 5 2 4 11 2 3 3 2 5
z||leo | 45 14 1 1 229 875 2 1 2 1

CRT | .144 .788 .029 .036 3.344 3.056 .155 .842 2.358 1.458
Lift1 | .109 .443 .030 .029 1.183 2.374 .174 612 2.761 .462
Lift2  .111 .294 .100 .163 1.973 1.678 .640 3.022 7.627 5.711
GE | 109 3080 30.15 10.49 4419 769 848 2055 2265 1195
# primes 4 1 1 1 9 36 1 1 1 1 4
74

Det | .293 4.159 305 .147 6.206 4.644 3.748 53.69 338 2
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