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One nice property of the trace function
Let[F5,, == Fon \ {0} and letTt : Fon — IFy denote the trace mapping given by:

2m—1

Tr(x) = Zx2i2x+x2+---+x2m_l.
1=0

Lemma 1 (KG-PL, 2007) Letm > 1 and letk be such thaged(2¥ — 1,2™ — 1) = 1. Then for

eacha € Fom we haveTr(a!/ (2 —1)) = 0 if and only ifa = t2° + 2 ! for somet € Fom.

Kloosterman sums divisible by 3
Definition 1. TheKloosterman mapis the mappingx : Fon — Z defined by

Proof. Lett € Fom, t ¢ {0, 1}, and consider the elliptic curve
E yP+ay =1+ ap® + 15+ 1Y),
where

0 if Tr(t) =0,
a9 = |
1 if Tr(t) = 1.

“<" (Proved first by Helleseth and Zinoviev, 1999.)
¢ Using (Lachaud and Wolfmann, 1990) we get

ue, oM 4 1+ K(t* 4% if Te(t) =0,
Tl - K e T = L

e The order of > +t : t* +¢3 : 1)in & is 6, hence|#&;.
e Since3|(2" + 1), we get3| K (t* + 7).

=" ... In fact “”

e Charpin, Helleseth and Zinoviev (2007) showed taf(a) < Tr(al/?) =0
e Setk =21n Tr(al/@k_l)) — 0o a=1t2 +2L
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Counting Coset Leaders for the Melas code

Definition 2. H is called aparity check matrixfor a linear codeC if + € ¢ «<— Ha! = 0.
Hal is thesyndromeof z:.

Note thatFy» ~ F5*, and leta a primitive element offon, then the standard parity check matrix
of theMelas codeM,, IS
a ... a ... ot}
P = (al oaTt a(2m1>> '

Our goal: find the number of coset leaders for a coseiMf,, of weight 3 corresponding to a
given syndroméa, b)! € Fom x Fom produced byH ;.

If a« # 0, assume w.l.0.g. that = 1 and we’ll be led to counting the number of solutions to the
following system of equations ovér,,.

{u+v+w— (*)

v+l 4wl = ¢
wherer € Fom IS a fixed constant.

Theorem 2 (KG-PL, 2007) Letr € Fon \ {0,1}. The number of solutions ov&¥,, of (*) is an
Integer’ such that

eT c 241 —2m/2tl _g om 14 om/2tl_ g
o 6 dividesT'.

Conversely, eacli’ satisfying these two conditions occurs as the number ofieokifor at least
oner € Fom \ {0, 1}.

|dea for the proof.We eliminatew and homogenize as = U/Z, v = V/Z. Next we apply the
substitution ) .

p— 1 —
T + n

1
U:¥x+(t+1)z,

1
V= t_2<y +s2) + (12 + 1)z,

t+1
7 = 5 r+(t+1)z.

\
Note: r € Fom \ {0, 1} impliest € Fom \ {0,1}.
We obtainthe same curvé; as before!

Counting the points. A lot of technical calculations show that exactly 6 points &ndo not
produce a solutioiw, v, w), thus the number of solutions to (*) #6&; — 6.

The assumption # 1 forcesu, v, w to be distinct in any solutiofw, v, w) to (*). Thus the number
of solutions is divisible by! = 6 for eachr ¢ {0, 1} and then so i$£&;.

By the Hasse Theorem for eacle Fon \ {0, 1} the number of solutions to (*) is in

M 41 — 2/ 2L g om 41 4 9m/2HL 6 M 6.

The proof in the other direction relies heavily on Lachaud @olfmann resuls. [ ]

Theorem 3(KG-PL, 2007) Let N (k) denote the number of thosez Fon \ {0, 1} for which the
number of solutions to (*) is equal o Then for eaclh € N we haveV (2" —5+[) = N(2"—5—1),
that is, the valuesv (k) are symmetric about = 2" — 5.

Special casesCases: = 0 orr € {0, 1} are easily doable but not interesting.

Applications In statistical experimental designs

Caps with many free pairs of points

e A capin PG(n, 2) is a setC' of points such that no three of them are collinear.
e Points ofC' are columns of the parity check mattk~ for a code of minimum distance 4.

e We say thafs,t} C C'is afree pair of pointsf {s, ¢} is not contained in any coplanar quadruple
of C.

Caps in statistics In experimental design terminology caps and free pair ofts@re calledrac-
tional factorial designandclear two-factor interactionsespectively. Given a coplanar quadruple
of points in a cap, saya, b, ¢, d}, in the analysis of an experiment it is impossible to diatisg
between the two-factor interaction ¢f, b} and the two-factor interaction dic, d} and hence
Impossible to say which combination is effecting the outeom

1 scoop 1tsp 1 cup 1 egg
2 scoops 2 tsp 2 cups 2 eggs

The goal: to maximize the number of free pairs of points in the cap gitrensize (number of
points) of the cap and its projective dimension.

Observation. All pairs of points ofC' are free if and only IfH~ defines a code of minimum
distance 5 (or more).

Almost perfect nonlinear and almost bent functions

Theorem 4 (Carlet, Charpin and Zinoviev, 1998) et f : Fom — Fom, f(0) = 0. LetC's be the
binary code defined be the parity check matrix

B 1 Q o - af 1
= (f(l) fle) fa?) - f<a2’”—1>> |

Thenf is almost perfect nonlinear (APNfand only ifd = 5.

Theorem 5(van Dam and Fon-Der-Flaass, 2003) functionf : F)* — 5" is almost bent (ABJ
If and only if the system

{u+v + w = a
flw) + f(v) + flw) = b

hasq — 2 or 3¢ — 2 solutions(u, v, w) for every(a, b), whereq = 2. If so, then the system has
3q — 2 solutions ifb = f(a) andq — 2 solutions otherwise.

Construction based on linear codes of distance 5

e Start with the parity check matrik * of a binary linear code of distance 5 defined by an APN
function and carefully add columns to it.

e If z is a newly added column anddf b, ¢ are three columns o * such thatz + b + ¢ = z, then
the free pairda, b}, {a, c} and{b, c} aredestroyed

e Add to H* syndromes: that correspond to cosets of weight 3 such that the numbeosstc
leaders is minimized.

e In (Lisonék, 2006) this was worked out for the Gold functiff:) = z° onFo» (BCH codes).
Whenm is odd, Gold functions are AB and van Dam & Fon-Der-Flaassrg® applies: the
number of solutions is alway®’™" — 2.

e On the other handf(z) = ' is APN form oddbut not AB. Therefore the number of solutions
can be as low as roughty’ — om/2+1 thus yielding a further improvement over the past result.
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