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ABSTRACT
We present a new black box GCD algorithm for two multivari-

ate polynomials 𝑎 and 𝑏 in Z[𝑥1, 𝑥2, . . . , 𝑥𝑛] where 𝑎 and 𝑏 are

input as black boxes for their evaluation. Our algorithm computes

𝑔 = gcd(𝑎, 𝑏) in the sparse representation using sparse Hensel lift-

ing from bivariate images of 𝑔. More precisely, our algorithm first

computes the square-free factorization of the primitive part of 𝑔 in

𝑥1 and then, optionally, computes the content of 𝑔 in 𝑥1 recursively.

We have implemented our new algorithm in Maple with parts

of it coded in C for increased efficiency. For comparison, we have

implemented the Kaltofen-Diaz black box GCD algorithm and also

a black box GCD algorithm constructed from the Kaltofen-Yang

sparse rational function interpolation algorithm. Our experimental

results show that our new algorithm is always competitive with

the Kaltofen-Yang and Kaltofen-Diaz algorithms and faster when

the square-free factors of 𝑔 are smaller than 𝑔 or we do not need

the content of 𝑔 in 𝑥1 .

CCS CONCEPTS
• Computing methodologies→ Symbolic and algebraic ma-
nipulation.
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1 INTRODUCTION
Let𝑎 and𝑏 be polynomials inZ[𝑥1, ..., 𝑥𝑛]. Computing𝑔 = gcd(𝑎, 𝑏),
the greatest common divisor (GCD) of 𝑎 and 𝑏, is a key operation

in a Computer Algebra system. It is used to simplify the fraction

𝑎/𝑏. The first main step to factor 𝑎 is to compute gcd(𝑎, 𝜕𝑎/𝜕𝑥1) to
identify repeated factors of 𝑎.

Computing GCDs in Z[𝑥1, . . . , 𝑥𝑛] is more difficult than multi-

plying and dividing polynomials. All variations of the Euclidean

algorithm, including the Subresultant algorithm (see Brown and

Traub [2]), encounter an 𝑛 dimensional expression swell where
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the intermediate remainders grow in size. This render’s those al-

gorithms useless when 𝑛 is not small. The first algorithm to avoid

the expression swell was Brown’s dense modular GCD algorithm

from [3]. Two early GCD algorithms for sparse polynomials in-

clude Zippel’s sparse modular GCD algorithm from [20] which is

currently used in Fermat, Magma, Maple and Mathematica, and

Wang’s EEZ-GCD algorithm from [19]. Two recent sparse GCD

algorithms include Hu and Monagan [10] which does a Kronecker

substitution on (𝑥2, ..., 𝑥𝑛) and Huang and Monagan [11] which

uses a randomized Kronecker substitution.

In this work, we present a newGCD algorithm forZ[𝑥1, 𝑥2, . . . , 𝑥𝑛]
where the polynomials 𝑎 and 𝑏 are input by black boxes for their

evaluation. The black box representation was first introduced into

Computer Algebra by Kaltofen and Trager in 1990 [12]. The sparse
representation of 𝑎 ∈ Z[𝑥1, ..., 𝑥𝑛] consists of a list of non-zero

integer coefficients 𝑐𝑘 and monomials 𝑀𝑘 in 𝑥1, ..., 𝑥𝑛 such that

𝑎 =
∑𝑡
𝑘=1

𝑐𝑘𝑀𝑘 where 𝑡 is the number of terms of 𝑎. The black
box representation of 𝑎 ∈ Z[𝑥1, ..., 𝑥𝑛] is a computer program B𝑎
that takes a point 𝛼 ∈ Z𝑛 and outputs 𝑎(𝛼). Computing B𝑎 (𝛼) is
called probing the black box. For efficiency, we will assume we can

construct amodular black box, that is, a black box that can compute

𝑎(𝛼) mod 𝑝 for a prime 𝑝 . Thus we view the black box as mapping

B𝑎 : (Z𝑛, 𝑝) → Z𝑝 . Figure 1 depicts a modular black box.

𝑎(𝑥1, ..., 𝑥𝑛) ∈ Z[𝑥1, ..., 𝑥𝑛]
𝑎(𝛼1, ..., 𝛼𝑛) mod 𝑝

B𝑎

𝑝

𝑥1 = 𝛼1

𝑥2 = 𝛼2

𝑥3 = 𝛼3

.

.

.

𝑥𝑛 = 𝛼𝑛

Figure 1: The modular black box model for 𝑎 ∈ Z[𝑥1, ..., 𝑥𝑛]

The advantage of the black box representation is that computing

B𝑎 (𝛼, 𝑝) can be much faster than computing 𝑎(𝛼) mod 𝑝 in the

sparse representation. For example, in the black box representation

the polynomial𝑎 = (𝑥1−𝑥2) (𝑥1−𝑥3) . . . (𝑥1−𝑥𝑛) can be represented
using𝑂 (𝑛) space and it can be evaluated using just𝑛−1 subtractions

and 𝑛 − 2 multiplications. But, in the sparse representation, 𝑎 has

2
𝑛−1

terms, which is exponential in 𝑛.

In [12], Kaltofen and Trager presented algorithms for factoring

polynomials given by black boxes and computing GCDs of poly-

nomials given by black boxes. In [7], Kaltofen and Diaz improved

the black box GCD algorithm of Kaltofen and Trager [12]. The

only other black box GCD algorithm that we know of is Lecerf and

https://doi.org/x.x.x
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van der Hoeven’s algorithm in [18] which uses ideas similar to the

sparse rational function interpolation of Cuyt and Lee [6].

In [12], Kaltofen and Trager also presented an algorithm that,

given a rational function 𝑓 = 𝑎/𝑏, outputs black boxes for poly-

nomials 𝑐 = 𝑎/𝑔/𝑢 and 𝑑 = 𝑏/𝑔/𝑢 for some unit 𝑢. Kaltofen and

Trager called this operation the separation of numerators from their

denominators. In [13], Kaltofen and Yang improved on Kaltofen

and Trager’s algorithm. One way to compute 𝑔 = gcd(𝑎, 𝑏) is to
first compute 𝑐 and 𝑑 then use 𝑔 = 𝑎/𝑐 or 𝑔 = 𝑏/𝑑 to obtain 𝑔.

We will compare this approach using Kaltofen-Yang with our new

algorithm.

Our new algorithm makes use of the Hensel lifting algorithm

from Chen and Monagan [5]. It first computes pp(𝑔, 𝑥1), the prim-

itive part of 𝑔 = gcd(𝑎, 𝑏) in 𝑥1, using Hensel lifting. It recovers

the variables 𝑥 𝑗 for 𝑗 = 2, 3, . . . , 𝑛 in pp(𝑔, 𝑥1) from bivariate im-

ages of pp(𝑔, 𝑥1) in 𝑥1 and 𝑥 𝑗 which are obtained by probing the

black boxes for 𝑎 and 𝑏. Bivariate images are used to recover the

leading coefficient of pp(𝑔, 𝑥1). Then, in a second step, it computes

cont(𝑔, 𝑥1), the content of 𝑔 in 𝑥1 recursively. An advantage of our

approach is that we can easily omit computation cont(𝑔, 𝑥1). Thus
our algorithm will be faster than Kaltofen-Diaz when pp(𝑔, 𝑥1) is
smaller than 𝑔. One application where the content is not needed is

when we want to solve {𝑎(𝑥1) = 0, 𝑏 (𝑥1) = 0} for 𝑥1.

To improve efficiency further, we recover the square-free factor-

ization of pp(𝑔, 𝑥1). We can do this without increasing the overall

asymptotic cost by computing the square-free part of the bivariate

images of 𝑔 in 𝑥1 and 𝑥 𝑗 then using our bivariate Hensel lifting

from [16] to recover a square-free factorization in 𝑥1 and 𝑥 𝑗 . This

gives our algorithm a second advantage; it will be faster whenever

the square-free factors of pp(𝑔, 𝑥1) are smaller than pp(𝑔, 𝑥1).
We have implemented our algorithm in Maple with parts im-

plemented in C for efficiency. We use our algorithm to compute a

GCD in Z[𝑥1, ..., 𝑥𝑛] by computing it modulo several primes and

using Chinese remaindering and rational number reconstruction

to recover the integer coefficients of monic(𝑔). Our benchmarks in

Section 5 show that our algorithm is faster than modified imple-

mentations of Kaltofen-Yang’s and Kaltofen-Diaz’s black box GCD

algorithms.

2 DEFINITIONS AND NOTATION
We fix the lexicographical monomial ordering of polynomials in this

paper with 𝑥1 > · · · > 𝑥𝑛 . For a polynomial 𝑎 ∈ Z[𝑥1, ..., 𝑥𝑛], we
denote LC(𝑎) as the leading coefficient of 𝑎 and LM(𝑎) as the leading

monomial. We say 𝑎 is monic if LC(𝑎) = 1 and define monic(𝑎) =
𝑎/LC(𝑎). We denote the number of terms in the polynomial 𝑎 by

#𝑎.

Definition 2.1. Let 𝑎, 𝑏 ∈ Z[𝑥1, ..., 𝑥𝑛]. Then 𝑔 = gcd(𝑎, 𝑏) is
the greatest common divisor (GCD) of 𝑎 and 𝑏 if (i) 𝑔 divides 𝑎

and 𝑏, (ii) every common divisor of 𝑎 and 𝑏 divides 𝑔, and (iii)

sign(LC(𝑔)) = +1. Note (iii) imposes uniqueness on 𝑔.

Definition 2.2. Let𝑎 ∈ Z[𝑥2, ..., 𝑥𝑛] [𝑥1] with degree𝑑 = deg(𝑎, 𝑥1).
If𝑎 =

∑𝑑
𝑖=0

𝑎𝑖𝑥
𝑖
1
, we define LC(𝑎, 𝑥1) = 𝑎𝑑 , a polynomial inZ[𝑥2, ..., 𝑥𝑛].

The content of 𝑎 in 𝑥1 by cont(𝑎, 𝑥1) = gcd(𝑎0, 𝑎1, ..., 𝑎𝑑 ), a polyno-
mial in Z[𝑥2, ..., 𝑥𝑛] . If cont(𝑎, 𝑥1) = 1, we say 𝑎 is primitive in 𝑥1.

We define the primitive part of 𝑎 in 𝑥1 by pp(𝑎, 𝑥1) = 𝑎/cont(𝑎, 𝑥1).

Definition 2.3 (Definition 8.1 in [9]). Let 𝑎 ∈ Z𝑝 [𝑥1, ..., 𝑥𝑛] be
primitive in 𝑥1. We say 𝑎 is square-free if it has no repeated factors,

that is, there exists no 𝑏 with deg(𝑏) ≥ 1 such that 𝑏2 |𝑎. The square-
free factorization of 𝑎 is 𝑎 =

∏𝑟
𝑖=1

𝑎𝑖
𝑖
where each 𝑎𝑖 is square-free

and gcd(𝑎𝑖 , 𝑎 𝑗 ) = 1 for 𝑖 ≠ 𝑗 . The square-free part of 𝑎, denoted
sqf(𝑎), is defined as sqf (𝑎) = ∏𝑟

𝑖=1
𝑎𝑖 .

Example 2.1. Given 𝑔 = 3(𝑥2 − 𝑥3) (𝑥1 − 𝑥2)2 (𝑥1 + 𝑥3) we have
cont(𝑔, 𝑥1) = 3(𝑥2 − 𝑥3), pp(𝑔, 𝑥1) = (𝑥1 − 𝑥2)2 (𝑥1 + 𝑥3). The
square-free factorization of pp(𝑔, 𝑥1) is (𝑥1 + 𝑥3)1 (𝑥1 − 𝑥2)2 and

sqf (pp(𝑔, 𝑥1)) = (𝑥1 − 𝑥2) (𝑥1 + 𝑥3)

Our black box GCD algorithm will first compute the square-

free factorization (𝑥1 − 𝑥2)2 (𝑥1 + 𝑥3) of pp(𝑔, 𝑥1) in factored form.

It will then compute cont(𝑎, 𝑥1)/3 = (𝑥2 − 𝑥3). Here all factors

have only two terms. This is faster than computing monic(𝑔) =
(𝑥2 − 𝑥3) (𝑥1 − 𝑥2)2 (𝑥1 − 𝑥3) in expanded form which has 10 terms.

Lemma 2.1. Let 𝑎 ∈ Z[𝑥1, ..., 𝑥𝑛], 𝑎 ≠ 0 and 𝑔 = gcd(𝑎, 𝜕𝑎/𝜕𝑥1) .
Then 𝑎/𝑔 = sqf (pp(𝑎, 𝑥1)) since cont(𝑎, 𝑥1) |𝑔.

3 OUR NEW BLACK BOX GCD ALGORITHM
Let 𝑎 and 𝑏 be polynomials in Z[𝑥1, ..., 𝑥𝑛] with associated modular

black boxes B𝑎 and B𝑏 and let 𝑔 = gcd(𝑎, 𝑏). In this section, we

present twomain algorithms. Algorithm 1: MHLBBPGCD computes

monic(𝑔) mod 𝑝 in Z𝑝 [𝑥1, ..., 𝑥𝑛] for a prime 𝑝 using multivariate

Hensel lifting. Algorithm 4: BBMGCD uses Chinese remainder-

ing and rational number reconstruction (see [8, 14]) to compute

monic(𝑔) ∈ Q[𝑥1, ..., 𝑥𝑛] from modular images.

3.1 The MHLBBPGCD Algorithm
Consider the following square-free factorization

𝑔 = gcd(𝑎, 𝑏) = ℎ

𝑟∏
𝜌=1

𝑓
𝜌
𝜌

where (i) ℎ = cont(𝑔, 𝑥1) is in Z[𝑥2, ..., 𝑥𝑛], (ii) deg(𝑓𝜌 , 𝑥1) ≥ 0,

(iii) 𝑓𝜌 is primitive and square-free in Z[𝑥2, ..., 𝑥𝑛] [𝑥1], and (iv)

gcd(𝑓𝑖 , 𝑓𝑗 ) = 1 for 𝑖 ≠ 𝑗 . We shall now describe our new algorithm

which computes monic(𝑓𝜌 ) modulo a prime 𝑝 for 1 ≤ 𝜌 ≤ 𝑟 .

We assume that 𝑝 is a large prime (e.g. 𝑝 = 2
61 + 15) chosen

randomly in advance and that we have degree estimates 𝑑𝑎𝑖 , 𝑑𝑏𝑖
and 𝑑𝑔𝑖 for deg(𝑎, 𝑥𝑖 ), deg(𝑏, 𝑥𝑖 ), and deg(𝑔, 𝑥𝑖 ) for 1 ≤ 𝑖 ≤ 𝑛. We

say how we compute these estimates in Section 3.2.

We first pick an evaluation point 𝛼𝛼𝛼 = (𝛼2, ..., 𝛼𝑛) ∈ Z𝑛−1

𝑝 at

random, then interpolate 𝑎1 = 𝑎(𝑥1,𝛼𝛼𝛼) mod 𝑝 and 𝑏1 = 𝑏 (𝑥1,𝛼𝛼𝛼)
mod 𝑝 in Z𝑝 [𝑥1] using dense interpolation and probes to the black

boxesB𝑎 andB𝑏 and test if deg(𝑎1, 𝑥1) = 𝑑𝑎1 and deg(𝑏1, 𝑥1) = 𝑑𝑏1.

We use at least 𝑑𝑎1 + 2 probes when interpolating 𝑎1 to check that

our degree estimate 𝑑𝑎1 is correct. We do likewise for 𝑏1. In fact,

whenever we do an interpolation in this section, we use one extra

probe than necessary to check our degree estimates. If they do not

agree we stop the algorithm and output FAIL.

Nextwe compute𝑔1 = gcd(𝑎1, 𝑏1) inZ𝑝 [𝑥1], check that deg(𝑔1) =
𝑑𝑔1 and compute the square-free factorization of 𝑔1. Let 𝑔1 =∏𝑟

𝜌=1

ˆ𝑓
𝜌
𝜌 be the square-free factorization of𝑔1 where

ˆ𝑓𝜌 = (1/𝜆𝜌 ) 𝑓𝜌 (𝑥1,𝛼𝛼𝛼)
mod 𝑝 and 𝜆𝜌 = LC(𝑓𝜌 (𝑥1,𝛼𝛼𝛼)) ∈ Z for 1 ≤ 𝜌 ≤ 𝑟 . Let ˆℎ = 𝜆ℎℎ(𝛼𝛼𝛼)
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mod 𝑝 with 𝜆ℎ =
∏𝑟

𝜌=1
𝜆𝜌 ∈ Z. To be explicit,

𝑔(𝑥1,𝛼𝛼𝛼) = ℎ(𝛼𝛼𝛼) 𝑓1 (𝑥1,𝛼𝛼𝛼)1 · · · 𝑓𝑟 (𝑥1,𝛼𝛼𝛼)𝑟

= ℎ(𝛼𝛼𝛼)
(
𝜆1

ˆ𝑓1

)
1

· · ·
(
𝜆𝑟 ˆ𝑓𝑟

)𝑟
w.h.p.

= ℎ(𝛼𝛼𝛼) ©­«
𝑟∏

𝜌=1

𝜆
𝜌
𝜌
ª®¬︸           ︷︷           ︸

ˆℎ

ˆ𝑓 1

1
· · · ˆ𝑓 𝑟𝑟︸    ︷︷    ︸
𝑔1

.

The coefficients 𝜆𝜌 can be recovered later after Chinese remain-

dering and the content ℎ can be recovered recursively. For most

choices of𝛼𝛼𝛼 and 𝑝 , we will have (i) deg(𝑓𝜌 (𝑥1,𝛼𝛼𝛼), 𝑥1) = deg( ˆ𝑓𝜌 , 𝑥1),
(ii) 𝑓𝜌 = monic(𝑓𝜌 (𝑥1,𝛼𝛼𝛼)) for 1 ≤ 𝜌 ≤ 𝑟 and (iii) gcd( ˆ𝑓𝑖 , ˆ𝑓𝑗 ) = 1 for

all 𝑖 ≠ 𝑗 which is needed for Hensel lifting.

Let 𝑔 𝑗 = monic(pp(𝑔(𝑥1, ..., 𝑥 𝑗 , 𝛼 𝑗+1, ..., 𝛼𝑛), 𝑥1)) mod 𝑝 and let

ˆ𝑓𝜌,1 = ˆ𝑓𝜌 . Let ˆ𝑓𝜌,𝑗 = monic(𝑓𝜌 (𝑥1, ..., 𝑥 𝑗 , 𝛼 𝑗+1, ..., 𝛼𝑛)) for 2 ≤
𝑗 ≤ 𝑛 which we will compute sequentially. We call the CMBB-

SHLGCD algorithm (to be described shortly) with inputs B𝑎,B𝑏 , 𝛼𝛼𝛼 ,
𝑝 , ( ˆ𝑓𝜌,1, ..., ˆ𝑓𝜌,𝑟 ), 𝑑𝑎, 𝑑𝑏, and 𝑑𝑔 to Hensel lift

ˆ𝑓𝜌,1 (𝑥1) to ˆ𝑓𝜌,2 (𝑥1, 𝑥2),
then lift

ˆ𝑓𝜌,2 (𝑥1, 𝑥2) to ˆ𝑓𝜌,3 (𝑥1, 𝑥2, 𝑥3), etc. After the 𝑗 th Hensel

lifting step we’ve computed
ˆ𝑓𝜌,𝑗 s.t. sqf(𝑔 𝑗 ) =

∏𝑟
𝜌=1

ˆ𝑓𝜌,𝑗 mod 𝑝

and monic( ˆ𝑓𝜌,𝑗 (𝑥 𝑗 = 𝛼 𝑗 )) = ˆ𝑓𝜌,𝑗−1 mod 𝑝 . When the CMBB-

SHLGCD algorithm terminates, it returns either
ˆ𝑓𝜌,𝑛 such that

sqf (𝑔𝑛) =
∏𝑟

𝜌=1

ˆ𝑓𝜌,𝑛 (mod 𝑝) or FAIL if it gets unlucky in its

choice of evaluation points. If this happens, the CMBBSHLGCD

algorithm must restart with a different 𝛼𝛼𝛼 and a new prime 𝑝 . If

we do not want ℎ, the content of 𝑔, we can stop here and return

ˆ𝑓 =
∏𝑟

𝜌=1

ˆ𝑓
𝜌
𝜌,𝑛 .

To recover monic(cont(𝑔, 𝑥1)), we construct two new modular

black boxes B𝑐 ,B𝑑 : (Z𝑛−1, 𝑝) → Z𝑝 such that for 𝛽 ∈ Z𝑝 and

𝛾𝛾𝛾 ∈ Z𝑛−1

𝑝 , B𝑐 (𝛾𝛾𝛾, 𝑝) computes 𝑎(𝛽,𝛾𝛾𝛾)/ ˆ𝑓 (𝛽,𝛾𝛾𝛾) mod 𝑝 and B𝑑 (𝛾𝛾𝛾, 𝑝)
computes 𝑏 (𝛽,𝛾𝛾𝛾)/ ˆ𝑓 (𝛽,𝛾𝛾𝛾) mod 𝑝 . The black boxes return FAIL if

ˆ𝑓

evaluates to 0 in which case we need to restart with a different 𝛼𝛼𝛼 .

We use our MHLBBPGCD algorithm to get the GCD of B𝑐 and B𝑑
over Z𝑝 [𝑥2, ..., 𝑥𝑛] recursively.

We present the MHLBBPGCD algorithm as Algorithm 1.

Example 3.1. Consider the polynomials

𝑎 = 6(7𝑥2 − 3𝑥3) (2𝑥1 + 4𝑥2 + 1) (𝑥1 − 𝑥3)3 (𝑥2

1
+ 𝑥2 + 𝑥3 + 1),

𝑏 = 4(7𝑥2 − 3𝑥3) (2𝑥1 + 4𝑥2 + 1) (𝑥1 − 𝑥3)3 (𝑥1 + 𝑥2

2
+ 𝑥3 + 1)

in Z[𝑥1, 𝑥2, 𝑥3] and let B𝑎 and B𝑏 be the modular black box repre-

sentations of 𝑎 and 𝑏 respectively. We have 𝑔 = gcd(𝑎, 𝑏) = 2(7𝑥2 −
3𝑥3) (2𝑥1 + 4𝑥2 + 1) (𝑥1 −𝑥3)3, pp(𝑔, 𝑥1) = (2𝑥1 + 4𝑥2 + 1) (𝑥1 −𝑥3)3,
cont(𝑔, 𝑥1) = 2(7𝑥2 − 3𝑥3), and

monic(𝑔) = (𝑥2 − 3

7
𝑥3) (𝑥1 + 2𝑥2 + 1

2
) (𝑥1 − 𝑥3)3 .

We demonstrate how algorithm MHLBBPGCD computes 𝑔𝑚 =

monic(𝑔) mod 𝑝 for 𝑝 = 31. MHLBBPGCD is given degree estimates

for 𝑎, 𝑏 and 𝑔 that are correct with high probability. In this case, the

degrees are 𝑑𝑎 = (6, 3, 5), 𝑑𝑏 = (5, 4, 5) and 𝑑𝑔 = (4, 2, 4) for 𝑎, 𝑏 and

𝑔 respectively.

Let 𝛼𝛼𝛼 = (𝛼2, 𝛼3) = (7, 13). The MHLBBPGCD algorithm begins

by using dense interpolation and probes to theB𝑎 andB𝑏 to recover

Algorithm 1: MHLBBPGCD - Computes monic(gcd(𝑎, 𝑏))
mod 𝑝 for black boxes

Input:Modular black boxes B𝑎 and B𝑏 for 𝑎,𝑏 ∈ Z[𝑥1, ..., 𝑥𝑛 ],
𝑋 = [𝑥1, ..., 𝑥𝑛 ], 𝑛 ∈ N, prime 𝑝 , degree estimates

𝑑𝑎𝑖 ≤ deg(𝑎, 𝑥𝑖 ) , 𝑑𝑏𝑖 ≤ deg(𝑏, 𝑥𝑖 ) , and
𝑑𝑔𝑖 ≥ deg(gcd(𝑎,𝑏 ), 𝑥𝑖 ) (1 ≤ 𝑖 ≤ 𝑛) .

Output: 𝑔 ∈ Z𝑝 [𝑥1, 𝑥2, ..., 𝑥𝑛 ] s.t. 𝑔 = monic(gcd(𝑎,𝑏 ) ) mod 𝑝 or

FAIL.

1 Pick 𝛼𝛼𝛼 = (𝛼2, ..., 𝛼𝑛 ) ∈ (Z𝑝 \{0})𝑛−1
at random.

2 Interpolate 𝑎1 = 𝑎 (𝑥1,𝛼𝛼𝛼 ) ∈ Z𝑝 [𝑥1 ] via 𝑑𝑎1 + 2 probes to B𝑎 .

3 if deg(𝑎1, 𝑥1 ) ≠ 𝑑𝑎1 then return FAIL end
4 Interpolate 𝑏1 = 𝑏 (𝑥1,𝛼𝛼𝛼 ) ∈ Z𝑝 [𝑥1 ] via 𝑑𝑏1 + 2 probes to B𝑏 .

5 if deg(𝑏1, 𝑥1 ) ≠ 𝑑𝑏1 then return FAIL end
6 𝑔1 ← gcd(𝑎1, 𝑏1 ) ∈ Z𝑝 [𝑥1 ]. //𝑔1 is monic

7 if deg(𝑔1, 𝑥1 ) ≠ 𝑑𝑔1 then return FAIL end
8 Find the square-free factorization

∏𝑟
𝜌=1

ˆ𝑓
𝜌

𝜌,1
of 𝑔1 in Z𝑝 [𝑥1 ].

9 if 𝑛 = 1 then return
∏𝑟

𝜌=1

ˆ𝑓
𝜌

𝜌,1
end

//Calculate the primitive part of gcd(𝑎 mod 𝑝 , 𝑏 mod 𝑝)

10 [ ˆ𝑓1,𝑛, ..., ˆ𝑓𝑟,𝑛 ] ←
CMBBSHLGCD(B𝑎,B𝑏 , 𝑛, [ ˆ𝑓1,1, ..., ˆ𝑓𝑟,1 ],𝛼𝛼𝛼, 𝑝,𝑑𝑎,𝑑𝑏,𝑑𝑔) .

11 if CMBBSHLGCD returned FAIL then return FAIL end
12 ˆ𝑓 ←∏𝑟

𝜌=1

ˆ𝑓𝜌,𝑛
𝜌 ∈ Z𝑝 [𝑥1, ..., 𝑥𝑛 ]. // ˆ𝑓 = monic(pp(gcd(𝑎,𝑏 ), 𝑥1))

mod 𝑝

13 if the content of gcd(𝑎,𝑏 ) in 𝑥1 is not needed return ˆ𝑓 end
14 if 𝑑𝑔𝑖 − deg( ˆ𝑓 , 𝑥𝑖 ) = 0 for 2 ≤ 𝑖 ≤ 𝑛 then return ˆ𝑓 (there is no

content) end
// Calculate monic(cont(𝑔, 𝑥1 )) mod 𝑝

15 Pick 𝛽 ∈ Z𝑝 \ {0} at random. //fix 𝑥1

16 Create a modular black box B𝑐 : (Z𝑛−1, 𝑝 ) → Z𝑝 which for input

𝛾𝛾𝛾 ∈ Z𝑛−1

𝑝 computes B𝑎 ( (𝛽,𝛾𝛾𝛾 ), 𝑝 )/ ˆ𝑓 (𝛽,𝛾𝛾𝛾 ) mod 𝑝 if
ˆ𝑓 (𝛽,𝛾𝛾𝛾 ) ≠ 0

and FAIL otherwise.

17 Create a modular black box B𝑑 : (Z𝑛−1, 𝑝 ) → Z𝑝 which for input

𝛾𝛾𝛾 ∈ Z𝑛−1

𝑝 computes B𝑏 ( (𝛽,𝛾𝛾𝛾 ), 𝑝 )/ ˆ𝑓 (𝛽,𝛾𝛾𝛾 ) mod 𝑝 if
ˆ𝑓 (𝛽,𝛾𝛾𝛾 ) ≠ 0

and FAIL otherwise.

18 for 𝑖 from 2 to 𝑛 do
19 𝐷𝐴𝑖 ← 𝑑𝑎𝑖 − deg( ˆ𝑓 , 𝑥𝑖 ) .

𝐷𝐵𝑖 ← 𝑑𝑏𝑖 − deg( ˆ𝑓 , 𝑥𝑖 ) .
𝐷𝐺𝑖 ← 𝑑𝑔𝑖 − deg( ˆ𝑓 , 𝑥𝑖 ) .

20 end
21 ℎ ←MHLBBPGCD(B𝑐 ,B𝑑 , [𝑥2, ..., 𝑥𝑛 ], 𝑛 − 1, 𝑝, 𝐷𝐴,𝐷𝐵,𝐷𝐺 ) .
22 if MHLBBPGCD returned FAIL then return FAIL end
23 Set 𝑔 = ℎ · ˆ𝑓 .

24 return 𝑔.

𝑎1 = 𝑎(𝑥1, 𝛼2, 𝛼3) mod 𝑝 = 23𝑥6

1
+10𝑥5

1
+21𝑥4

1
+18𝑥3

1
+2𝑥2

1
+29𝑥1+21,

and 𝑏1 = 𝑏 (𝑥1, 𝛼2, 𝛼3) mod 𝑝 = 19𝑥5

1
+ 3𝑥4

1
+ 4𝑥3

1
+ 11𝑥2

1
+ 8𝑥1 + 17.

After dense interpolation, we calculate

𝑔1 = gcd(𝑎1, 𝑏1) = 𝑥4

1
+ 22𝑥3

1
+ 19𝑥2

1
+ 24𝑥1 + 27.

Next we compute the square-free factorization of 𝑔1 and obtain

𝑔1 = (𝑥1 + 30) (𝑥1 + 18)3 . (1)

Next we use the CMBBSHLGCD algorithm to lift the factors of

sqf(𝑔1), namely 𝑥1 + 30 and 𝑥1 + 18, to get

sqf (pp(𝑔𝑚, 𝑥1)) = (𝑥1 + 2𝑥2 + 16) (𝑥1 + 30𝑥3) ∈ Z𝑝 [𝑥2, 𝑥3] [𝑥1] .
We include the multiplicities calculated in (1) to get

pp(𝑔𝑚, 𝑥1) = (𝑥1 + 2𝑥2 + 16) (𝑥1 + 30𝑥3)3 .
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Next MHLBBPGCD makes a recursive call to calculate the GCD

of the polynomial contents of 𝑎 and 𝑏 over Z𝑝 . This will return
cont(𝑔𝑚, 𝑥1) = (𝑥2 + 4𝑥3). MHLBBPGCD concludes by returning

𝑔𝑚 = (𝑥2 + 4𝑥3) (𝑥1 + 2𝑥2 + 16) (𝑥1 + 30𝑥3)3. We note the factors of

𝑔𝑚 are monic in lex order with 𝑥1 > 𝑥2 > 𝑥3.

♦

3.1.1 The CMBBSHLGCD Algorithm. The CMBBSHLGCD algo-

rithm has the following input and output:

Input:Modular black boxesB𝑎,B𝑏 : (Z𝑛, 𝑝) → Z𝑝 , ˆ𝑓𝜌,1 ∈ Z𝑝 [𝑥1] (1 ≤
𝜌 ≤ 𝑟 ),𝛼𝛼𝛼 ∈ Z𝑛−1

𝑝 , a prime 𝑝 , degree estimates 𝑑𝑎𝑖 ≤ deg(𝑎, 𝑥𝑖 ),
𝑑𝑏𝑖 ≤ deg(𝑏, 𝑥𝑖 ), and 𝑑𝑔𝑖 ≥ deg(𝑔, 𝑥𝑖 ) (1 ≤ 𝑖 ≤ 𝑛), 𝑋 = [𝑥1, ..., 𝑥𝑛],
and 𝑛 ∈ N s.t.

(i) gcd( ˆ𝑓𝑘,1,
ˆ𝑓𝑙,1) = 1 for 𝑘 ≠ 𝑙 in Z𝑝 [𝑥1],

(ii) sqf(𝑔1) =

∏𝑟
𝜌=1

ˆ𝑓𝜌,1 mod 𝑝 ∈ Z𝑝 [𝑥1].
(iii)

ˆ𝑓𝜌,1 is monic in 𝑥1 for all 1 ≤ 𝜌 ≤ 𝑟 .

Output FAIL or
ˆ𝑓𝜌,𝑛 ∈ Z𝑝 [𝑥1, ..., 𝑥𝑛] (1 ≤ 𝜌 ≤ 𝑛) s.t.

(i) sqf(𝑔𝑛) =
∏𝑟

𝜌=1

ˆ𝑓𝜌,𝑛 mod 𝑝 ∈ Z𝑝 [𝑥1, ..., 𝑥𝑛],
(ii) monic(

ˆ𝑓𝜌,𝑛 (𝑥1,𝛼𝛼𝛼)) = ˆ𝑓𝜌,1 mod 𝑝 for all 1 ≤ 𝜌 ≤ 𝑟 ,

(iii)
ˆ𝑓𝜌,𝑛 is monic in lex 𝑥1 > 𝑥2 > · · · > 𝑥𝑛 for 1 ≤ 𝜌 ≤ 𝑟 .

We have modified the CMBBSHL algorithm created by Chen and

Monagan in 2024 [4]. Our algorithm lifts the monic square-free fac-

tors
ˆ𝑓𝜌,1 of𝑔1 to get themonic square-free factors of pp(𝑔, 𝑥1)mod 𝑝 .

It lifts
ˆ𝑓𝜌,1 (𝑥1) to ˆ𝑓𝜌,2 (𝑥1, 𝑥2), then lifts ˆ𝑓𝜌,2 (𝑥1, 𝑥2) to ˆ𝑓𝜌,3 (𝑥1, 𝑥2, 𝑥3),

etc. After the 𝑗 th Hensel lifting step, sqf(𝑔 𝑗 ) =
∏𝑟

𝜌=1

ˆ𝑓𝜌,𝑗 mod 𝑝 and

monic( ˆ𝑓𝜌,𝑗 (𝑥 𝑗 = 𝛼 𝑗 )) = ˆ𝑓𝜌,𝑗−1 mod 𝑝 . After the 𝑛th
step, sqf(𝑔𝑛) =∏𝑟

𝜌=1

ˆ𝑓𝜌,𝑛 mod 𝑝 .

CMBBSHL assumes 𝑓𝜌 (𝑥1, ..., 𝑥 𝑗 , 𝛼 𝑗+1, ..., 𝛼𝑛) and 𝑓𝜌 (𝑥1, ..., 𝑥 𝑗−1,

𝛼 𝑗 , ..., 𝛼𝑛) have the same supports in 𝑥1, ..., 𝑥 𝑗−1 for 2 ≤ 𝑗 ≤ 𝑛. This

is true with high probability if 𝑝 is large and 𝛼𝑖 is chosen at random

from Z𝑝 (see [5]). Our CMBBSHLGCD assumes likewise.

We present the CMBBSHLGCD algorithm as Algorithm 2 and

the direct sub-algorithm CMBBSHLGCDstepj as Algorithm 3.

Algorithm 2: CMBBSHLGCD

Input:Modular black boxes B𝑎 , B𝑏 for 𝑎,𝑏 ∈ Z[𝑥1, ..., 𝑥𝑛 ], 𝑛 ∈ Z,
ˆ𝑓𝜌,1 ∈ Z𝑝 [𝑥1 ] (1 ≤ 𝜌 ≤ 𝑟 ) s.t. conditions (i)-(iii) of the
input are satisfied, 𝛼𝛼𝛼 ∈ Z𝑛−1

𝑝 , a prime 𝑝 , degree estimates

𝑑𝑎𝑖 , 𝑑𝑏𝑖 and 𝑑𝑔𝑖 for deg(𝑎, 𝑥𝑖 ) , deg(𝑏, 𝑥𝑖 ) , and deg(𝑔, 𝑥𝑖 )
(1 ≤ 𝑖 ≤ 𝑛) .

Output: FAIL or
ˆ𝑓𝜌,𝑛 ∈ Z𝑝 [𝑥1, ..., 𝑥𝑛 ] (1 ≤ 𝜌 ≤ 𝑟 ) s.t. conditions

(i)-(iii) of the output are satisfied.

1 for j from 2 to n do
2 [ ˆ𝑓1, 𝑗 , ..., ˆ𝑓𝑟,𝑗 ] ← CMBBSHLGCDstepj(B𝑎 , B𝑏 ,

[ ˆ𝑓1, 𝑗−1, ..., ˆ𝑓𝑟,𝑗−1 ],𝛼𝛼𝛼, 𝑝 , 𝑑𝑎,𝑑𝑏,𝑑𝑔, 𝑗 ). // lift 𝑥 𝑗

3 if CMBBSHLGCDstepj returned FAIL then return FAIL end
4 end
5 return [ ˆ𝑓1,𝑛, ..., ˆ𝑓𝑟,𝑛 ]

In step 22 of Algorithm 3, BivariateHenselLift performs a bi-

variate Hensel lifting. Chen and Monagan improved our monic

bivariate Hensel lifting algorithm from [16] to treat the non-monic

case (see Algorithm 14 in [4]).

Algorithm 3: CMBBSHLGCDstepj: Hensel lift 𝑥 𝑗

Input:Modular black boxes B𝑎 , B𝑏 for 𝑎,𝑏 ∈ Z[𝑥1, ..., 𝑥𝑛 ],
ˆ𝑓𝜌,𝑗−1 ∈ Z𝑝 [𝑥1, ..., 𝑥 𝑗−1 ] (1 ≤ 𝜌 ≤ 𝑟 ) s.t.
monic(sqf(𝑔𝑗 (𝑥 𝑗 = 𝛼 𝑗 ) ) ) =

∏𝑟
𝜌=1

ˆ𝑓𝜌,𝑗−1, 𝛼𝛼𝛼 ∈ Z𝑛−1
, a

prime 𝑝 , degree estimates 𝑑𝑎𝑖 , 𝑑𝑏𝑖 , 𝑑𝑔𝑖 , and 𝑗 ≥ 2 ∈ Z.
Output: ˆ𝑓𝜌,𝑗 ∈ Z𝑝 [𝑥1, ..., 𝑥 𝑗 ] (1 ≤ 𝜌 ≤ 𝑟 ) s.t. (i) sqf(𝑔𝑗 ) =∏𝑟

𝜌=1

ˆ𝑓𝜌,𝑗 , and (ii) monic(
ˆ𝑓𝜌,𝑗 (𝑥 𝑗 = 𝛼 𝑗 )) = ˆ𝑓𝜌,𝑗−1 mod

𝑝 (1 ≤ 𝜌 ≤ 𝑟 ) or FAIL.
1 Let

ˆ𝑓𝜌,𝑗−1 =
∑𝑑𝑓𝜌

𝑖=0
𝜎𝜌,𝑖 (𝑥2, ..., 𝑥 𝑗−1 )𝑥𝑖

1
where

𝑑𝑓𝜌 = deg( ˆ𝑓𝜌,𝑗−1, 𝑥1 ) for 1 ≤ 𝜌 ≤ 𝑟 .

2 Let 𝜎𝜌,𝑖 =
∑𝑠𝜌,𝑖

𝑘=1
𝑐𝜌,𝑖𝑘𝑀𝜌,𝑖𝑘 where𝑀𝜌,𝑖𝑘 are monomials in

𝑥2, ..., 𝑥 𝑗−1 and 𝑠𝜌,𝑖 = #𝜎𝜌,𝑖 .

3 Pick non-zero 𝛽2, ..., 𝛽 𝑗−1 ∈ Z𝑝 at random.

4 S𝜌,𝑖 ← {𝑚𝜌,𝑖𝑘 = 𝑀𝜌,𝑖𝑘 (𝛽2, ..., 𝛽 𝑗−1 ) for 1 ≤ 𝑘 ≤ 𝑠𝜌,𝑖 } for
1 ≤ 𝜌 ≤ 𝑟, 0 ≤ 𝑖 ≤ 𝑑𝑓𝜌 .

5 if any |S𝜌,𝑖 | ≠ 𝑠𝜌,𝑖 return FAIL.

6 Let 𝑠 be the maximum of 𝑠𝜌,𝑖 .

// Compute 𝑠 images of the factors in Z𝑝 [𝑥1, 𝑥 𝑗 ]:
7 for 𝑘 from 1 to 𝑠 do
8 Let 𝑌𝑘 = (𝑥2 = 𝛽𝑘

2
, ..., 𝑥 𝑗−1 = 𝛽𝑘

𝑗−1
) .

9 Interpolate 𝐴𝑘 = 𝑎 (𝑥1, 𝑌𝑘 , 𝑥 𝑗 , 𝛼 𝑗+1, ..., 𝛼𝑛 ) ∈ Z𝑝 [𝑥1, 𝑥 𝑗 ] via
probes to B𝑎 .

10 if deg(𝐴𝑘 , 𝑥1 ) ≠ 𝑑𝑎1 or deg(𝐴𝑘 , 𝑥 𝑗 ) ≠ 𝑑𝑎 𝑗 return FAIL.

11 Interpolate 𝐵𝑘 = 𝑏 (𝑥1, 𝑌𝑘 , 𝑥 𝑗 , 𝛼 𝑗+1, ..., 𝛼𝑛 ) ∈ Z𝑝 [𝑥1, 𝑥 𝑗 ] via
probes to B𝑏 .

12 if deg(𝐵𝑘 , 𝑥1 ) ≠ 𝑑𝑏1 or deg(𝐵𝑘 , 𝑥 𝑗 ) ≠ 𝑑𝑏 𝑗 return FAIL.

13 𝐺𝑘 ← gcd(𝐴𝑘 , 𝐵𝑘 ) ∈ Z𝑝 [𝑥1, 𝑥 𝑗 ].
14 if deg(𝐺𝑘 , 𝑥1 ) ≠ 𝑑𝑔1 or deg(𝐺𝑘 , 𝑥 𝑗 ) ≠ 𝑑𝑔𝑗 return FAIL.

15 𝑆𝑘 ← gcd(𝐺𝑘 , 𝜕𝐺𝑘/𝜕𝑥1 ) ∈ Z𝑝 [𝑥1, 𝑥 𝑗 ].
16 𝐺𝑠 𝑓 ← quo(𝐺𝑘 , 𝑆𝑘 ) ∈ Z𝑝 [𝑥1, 𝑥 𝑗 ]. //𝐺𝑠 𝑓 = sqf(𝐺𝑘 ) mod 𝑝 ,

up to a constant in Z𝑝 .
17 if deg(𝐺𝑠 𝑓 , 𝑥1 ) ≠

∑𝑟
𝜌=1

𝑑𝑓𝜌 return FAIL.

18 𝐺𝑠 𝑓𝑚 ← monic(𝐺𝑠 𝑓 ) mod 𝑝 . // make𝐺𝑠 𝑓 monic in 𝑥 𝑗 .

19 𝐹𝜌,𝑘 ← ˆ𝑓𝜌,𝑗−1 (𝑥1, 𝑌𝑘 ) ∈ Z𝑝 [𝑥1 ] for 1 ≤ 𝜌 ≤ 𝑟 .

20 if any deg(𝐹𝜌,𝑘 ) < 𝑑𝑓𝜌 (for 1 ≤ 𝜌 ≤ 𝑟 ) return FAIL.

21 if gcd(𝐹𝜌,𝑘 , 𝐹𝜙,𝑘 ) ≠ 1 for any 1 ≤ 𝜌 < 𝜙 ≤ 𝑟 return FAIL.

22 ¯𝑓𝜌,𝑘 ← BivariateHenselLift(𝐺𝑠 𝑓𝑚, [𝐹
1,𝑘 , ..., 𝐹𝑟,𝑘 ], 𝛼 𝑗 , 𝑝 ) .

23 end
24 if 𝑛 = 2 return [ ¯𝑓

1,𝑘 , ...,
¯𝑓𝑟,𝑘 ].

25 Let
¯𝑓𝜌,𝑘 =

∑𝑡𝜌

𝑙=1
𝛼𝜌,𝑘𝑙 �̃�𝜌,𝑙 (𝑥1, 𝑥 𝑗 ) ∈ Z𝑝 [𝑥1, 𝑥 𝑗 ] for 1 ≤ 𝑘 ≤ 𝑠 , for

1 ≤ 𝜌 ≤ 𝑟 where 𝑡𝜌 = #
¯𝑓𝜌,𝑘 .

26 for 𝜌 from 1 to 𝑟 do
27 for 𝑙 from 1 to 𝑡𝜌 do
28 𝑖 ← deg(�̃�𝜌,𝑙 , 𝑥1 ) .
29 Solve the linear system {

∑𝑠𝜌,𝑖

𝑘=1
𝑚𝑡

𝜌,𝑖𝑘
𝑐𝜌,𝑙𝑘 = 𝛼𝜌,𝑡𝑙 for

1 ≤ 𝑡 ≤ 𝑠𝜌,𝑖 } for 𝑐𝜌,𝑙𝑘 ∈ Z𝑝 .
30 end
31 ˆ𝑓𝜌,𝑗 ←

∑𝑡𝜌

𝑙=1
(∑𝑠𝜌,𝑖

𝑘=1
𝑐𝜌,𝑙𝑘𝑀𝜌,𝑖𝑘 (𝑥2, ..., 𝑥 𝑗−1 ) )�̃�𝜌,𝑙 (𝑥1, 𝑥 𝑗 ) .

32 end
33 return ˆ𝑓𝜌,𝑗 (1 ≤ 𝜌 ≤ 𝑟 )

3.2 BBMGCD Algorithm (main algorithm)
The second algorithm we present in this paper is Algorithm 4,

the BBMGCD algorithm. This is the main algorithm for comput-

ing 𝑔 = monic(gcd(𝑎, 𝑏)) in Q[𝑥1, ..., 𝑥𝑛]. BBMGCD takes as in-

put the modular black boxes B𝑎 and B𝑏 and the set of variables

𝑋 = [𝑥1, ..., 𝑥𝑛]. It first computes degree estimates 𝑑𝑎𝑖 , 𝑑𝑏𝑖 and
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𝑑𝑔𝑖 for deg(𝑎, 𝑥𝑖 ), deg(𝑏, 𝑥𝑖 ) and deg(𝑔, 𝑥𝑖 ) respectively using Al-

gorithm 5 defined in Section 3.2.1. The MHLBBPGCD algorithm

is then called to calculate 𝑔 mod 𝑝 for several primes 𝑝 . Chinese

remaindering and rational number reconstruction (see [8, 14]) are

used to obtain the rational coefficients of monic(𝑔).
BBMGCD has two checks to make sure we have computed the

correct 𝑔. It ensures the modular images of 𝑔 have the same leading

monomial in lex order for each different prime 𝑝 and it checks if 𝑔

divides both 𝑎 and 𝑏 probabilistically.

Algorithm 4: The BBMGCD algorithm

Input:Modular black boxes B𝑎 ,B𝑏 for 𝑎,𝑏 ∈ Z[𝑥1, ..., 𝑥𝑛 ], the
variables 𝑋 = [𝑥1, ..., 𝑥𝑛 ].

Output: monic(𝑔) ∈ Q[𝑥1, ..., 𝑥𝑛 ] s.t. 𝑔 = gcd(𝑎,𝑏 ) or FAIL.
1 𝑀,𝐺 ← 0, 0.

2 Pick a random 62-bit prime 𝑞 for degree approximations.

3 Pick a random point 𝛼𝛼𝛼 ∈ Z𝑛𝑞 .
4 for 𝑖 from 1 to 𝑛 do
5 // Use Algorithm 5 to interpolate

𝑎𝑖 = 𝑎 (𝛼1, ..., 𝛼𝑖−1, 𝑥𝑖 , 𝛼𝑖+1, ..., 𝛼𝑛 ) mod 𝑞 and

𝑏𝑖 = 𝑏 (𝛼1, ..., 𝛼𝑖−1, 𝑥𝑖 , 𝛼𝑖+1, ..., 𝛼𝑛 ) mod 𝑞.

6 𝑎𝑖 ← UnivInterp(B𝑎,𝛼𝛼𝛼, 𝑖, 𝑞) .
7 𝑏𝑖 ← UnivInterp(B𝑏 ,𝛼𝛼𝛼, 𝑖, 𝑞) .
8 𝑔𝑖 ← gcd(𝑎𝑖 , 𝑏𝑖 ) ∈ Z𝑞 [𝑥𝑖 ].
9 𝑑𝑎𝑖 , 𝑑𝑏𝑖 , 𝑑𝑔𝑖 ← deg(𝑎𝑖 , 𝑥𝑖 ), deg(𝑏𝑖 , 𝑥𝑖 ), deg(𝑔𝑖 , 𝑥𝑖 ) .

10 end
11 while true do
12 Pick a new random 62-bit prime 𝑝 .

13 𝑔𝑝 ←MHLBBPGCD(B𝑎,B𝑏 , 𝑋,𝑛, 𝑝,𝑑𝑎,𝑑𝑏,𝑑𝑔) ∈
Z𝑝 [𝑥1, ..., 𝑥𝑛 ] using Algorithm 1.

14 if MHLBBPGCD returned FAIL then return FAIL.

15 if 𝐺 = 0 then
16 Calculate 𝑔 ∈ Q[𝑥1, ..., 𝑥𝑛 ] s.t. 𝑔 ≡ 𝑔𝑝 (mod 𝑝 ) using

rational number reconstruction and set

𝑀,𝐺, �̂� ← 𝑝,𝑔𝑝 , 𝑔.

17 else if LM(𝐺 ) = LM(𝑔𝑝 ) then
18 Solve {𝑔∗ ≡ 𝐺 (mod 𝑀 ), 𝑔∗ ≡ 𝑔𝑝 (mod 𝑝 )} for 𝑔∗ using

Chinese remaindering and set𝑀 ← 𝑀 · 𝑝 .
19 Calculate 𝑔 ∈ Q[𝑥1, ..., 𝑥𝑛 ] s.t. 𝑔 ≡ 𝑔∗ (mod 𝑀 ) using

rational number reconstruction.

//Require one prime of agreement

20 if 𝑔 ≠ FAIL and 𝑔 = �̂� then
//Test if 𝑔 |𝑎 and 𝑔 |𝑏

21 Let
ˆℎ ∈ Z[𝑥1, ..., 𝑥𝑛 ] be the result of clearing the

fractions of 𝑔.

22 Pick a new 63-bit prime 𝑞 and point𝛾𝛾𝛾 ∈ Z𝑛−1

𝑞 at

random s.t. deg( ˆℎ (𝑥1,𝛾𝛾𝛾 ) ) = deg( ˆℎ, 𝑥1 ) to avoid ÷ by

0 and bad check.

23 𝑎𝑞 ← UnivInterp(B𝑎,𝛾𝛾𝛾, 1, 𝑞) .
24 𝑏𝑞 ← UnivInterp(B𝑏 ,𝛾𝛾𝛾, 1, 𝑞) .
25 if ˆℎ (𝑥1,𝛾𝛾𝛾 ) |𝑎𝑞 and

ˆℎ (𝑥1,𝛾𝛾𝛾 ) |𝑏𝑞 in Z𝑞 [𝑥1 ] then
return 𝑔 else return FAIL end

26 end
27 𝐺, �̂� ← 𝑔∗, 𝑔.

28 else
29 return FAIL.

30 end
31 end

3.2.1 Computing the degrees of 𝑎, 𝑏 and 𝑔. In lines 5-8 of Algo-

rithm 4: BBMGCD, we calculate degree estimates for deg(𝑎, 𝑥𝑖 ),
deg(𝑏, 𝑥𝑖 ) and deg(𝑔, 𝑥𝑖 ) for 1 ≤ 𝑖 ≤ 𝑛. To compute deg(𝑎, 𝑥𝑖 ),
we pick 𝛼𝛼𝛼 ∈ Z𝑛𝑝 at random then apply Algorithm 5 from [4]

to interpolate 𝑎𝑖 = 𝑎(𝛼1, ..., 𝛼𝑖−1, 𝑥𝑖 , 𝛼𝑖+1, ..., 𝛼𝑛) mod 𝑝 . We have

deg(𝑎𝑖 , 𝑥𝑖 ) = deg(𝑎, 𝑥𝑖 ) with high probability (see [4, 7]). It is pos-

sible that deg(𝑎𝑖 , 𝑥𝑖 ) < deg(𝑎, 𝑥𝑖 ). This is unavoidable in the black

box model.

Algorithm 5: UnivInterp: Interpolate 𝑎(𝑥𝑖 ) mod 𝑝

1 Input: A modular black box B𝑎 for 𝑎 ∈ Z[𝑥1, ..., 𝑥𝑛 ], 𝛼𝛼𝛼 ∈ Z𝑛𝑝 ,
𝑖 ∈ N, and a large prime 𝑝 .

2 Output: A polynomial 𝑏 = 𝑎 (𝛼1, ..., 𝛼𝑖−1, 𝑥𝑖 , 𝛼𝑖+1, ..., 𝛼𝑛 ) mod 𝑝 s.t.

deg(𝑏, 𝑥𝑖 ) = deg(𝑎, 𝑥𝑖 ) w.h.p.
3 Reference: Kaltofen and Diaz [7], Chen and Monagan [5].

4 𝑏 ← 0;𝑀 ← 1; 𝑘 ← −1.

5 repeat
6 𝑘 ← 𝑘 + 1.

7 Pick 𝛽𝑘 ∈ Z∗𝑝 at random s.t. 𝛽𝑘 ≠ 𝛽 𝑗 for 0 ≤ 𝑗 ≤ 𝑘 − 1.

8 𝑦𝑘 ← B𝑎 ( (𝛼1, 𝛼2, ..., 𝛼𝑖−1, 𝛽𝑘 , 𝛼𝑖+1, ..., 𝛼𝑛 ), 𝑝 ) .
9 𝑣𝑘 ← (𝑦𝑘 − 𝑏 (𝛽𝑘 ) )/𝑀 (𝛽𝑘 ) .

10 𝑏 ← 𝑏 + 𝑣𝑘 ·𝑀 .

11 𝑀 ← 𝑀 · (𝑥𝑖 − 𝛽𝑘 ) .
12 until 𝑣𝑘 = 0;

13 return 𝑏.

4 COMPLEXITY ANALYSIS
Let𝑔 = gcd(𝑎, 𝑏). In this section, we determine the complexity of Al-

gorithm 4: BBMGCD to compute the square-free factors 𝑓1, 𝑓2, ..., 𝑓𝑟
of pp(𝑔, 𝑥1) . We do not include the cost of computing the square-

free factors of cont(𝑔, 𝑥1). The complexity is given in terms of the

size of the inputs 𝑎 and 𝑏 and the outputs 𝑓1, 𝑓2, ..., 𝑓𝑟 . Through-

out the analysis 𝑑𝑖 = max(deg(𝑎, 𝑥𝑖 ), deg(𝑏, 𝑥𝑖 ) for 1 ≤ 𝑖 ≤ 𝑛,

𝐷 = max(𝑑1, ..., 𝑑𝑛),𝐶𝑎 and𝐶𝑏 are the number of arithmetic opera-

tions in Z𝑝 to evaluate B𝑎 and B𝑏 respectively and #𝐹 =
∑𝑟

𝜌=1
#𝑓𝜌

is the number of terms in the square-free factors.

Algorithm CMBBSHLGCD calls algorithm CMBBSHLGCDstepj

𝑛 − 1 times to recover 𝑥2, 𝑥3, ..., 𝑥𝑛 one at a time in the square-free

factors of pp(𝑔, 𝑥1). This means we lose a factor of 𝑛−1 in efficiency

when compared with algorithms like Kaltofen-Diaz which can in-

terpolate all variables in 𝑔 simultaneously. The core of Algorithm

CMBBSHLGCDstepj is steps 8 to 22 whose cost is multiplied by

𝑠 . Let 𝑑 𝑓𝜌 = deg(𝑓𝜌 , 𝑥1) and let 𝑓𝜌 =
∑𝑑𝑓𝜌
𝑖=0

𝜏𝜌,𝑖 (𝑥2, ..., 𝑥𝑛)𝑥𝑖
1
. Step 2

defines

𝑠𝜌,𝑖 = #𝜎𝜌,𝑖 (𝑥2, ..., 𝑥 𝑗−1) = #𝜏𝜌,𝑖 (𝑥2, ..., 𝑥 𝑗−1, 𝛼 𝑗 , ..., 𝛼𝑛) .

Step 6 sets 𝑠 = max𝜌,𝑖 𝑠𝜌,𝑖 . Let 𝑠 𝑗 be the value of 𝑠 in Algorithm

CMBBSHLGCDdstepj for lifting 𝑥 𝑗 and let 𝑠max = max
𝑛−1

𝑗=2
𝑠 𝑗 . Thus

𝑠max ≤ max𝜌,𝑖 #𝜏𝜌,𝑖 . The ratio #𝑔/𝑠max represents a speedup of our

algorithm over an algorithm that interpolates 𝑔. In Example 2.1,

𝑓1 = 𝑥1 − 𝑥2, 𝑓2 = 𝑥1 + 𝑥3, 𝑠max = 1 and #𝑔 = 10. In Example 3.1,

𝑓1 = 𝑥1 + 2𝑥2 + 1

2
, 𝑓2 = 𝑥1 − 𝑥3, 𝑠max = 2 and #𝑔 = 21.
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4.1 CMBBSHLGCD Complexity
We give the following theorem for the complexity of Algorithm 2:

CMBBSHLGCD.

Theorem 4.1. Let 𝑝 be a large prime and, 𝑎, 𝑏 ∈ Z[𝑥1, ..., 𝑥𝑛]. If
Algorithm CMBBSHLGCD does not return FAIL, then the total

number of arithmetic operations in Z𝑝 for lifting
ˆ𝑓𝜌,1 to

ˆ𝑓𝜌,𝑛 using

Algorithm CMBBSHLGCDstepj is at most

𝑂 ((𝑛−1)𝑠max (𝑑1𝐷 (𝑑1+𝐷+𝐶𝑎+𝐶𝑏 ) + (𝑛+𝐷)#𝐹 + 𝑛𝐷)) . (2)

From (2), one sees that the total number of probes to the black boxes

is 𝑂 ((𝑛 − 1) 𝑠max𝑑1𝐷).

Proof. Let 𝑑𝑎 𝑗 = deg(𝑎, 𝑥 𝑗 ), 𝑑𝑏 𝑗 = deg(𝑏, 𝑥 𝑗 ), 𝑑𝑔 𝑗 = deg(𝑔, 𝑥 𝑗 ),
and

˜𝑑 𝑗 = deg(sqf (gcd(𝑎, 𝑏)), 𝑥 𝑗 ) for 1 ≤ 𝑗 ≤ 𝑛. In step 9 of

Algorithm 3, we use dense interpolation to get the bivariate im-

age 𝑎(𝑥1, 𝑌𝑘 , 𝑥 𝑗 , 𝛼 𝑗+1, ..., 𝛼𝑛). This operation does𝑂 (𝑑𝑎1𝑑𝑎 𝑗 ) probes
to B𝑎 and 𝑂 (𝑑𝑎2

1
𝑑𝑎 𝑗 + 𝑑𝑎1𝑑𝑎

2

𝑗
) arithmetic operations in Z𝑝 . The

total cost of step 9 for the 𝑠 interpolations is 𝑂 (𝑠𝑑𝑎1𝑑𝑎 𝑗𝐶𝑎) +
𝑂 (𝑠 (𝑑𝑎2

1
𝑑𝑎 𝑗 + 𝑑𝑎1𝑑𝑎

2

𝑗
)) ⊆ 𝑂 (𝑠𝑑1𝑑 𝑗𝐶𝑏 ) + 𝑂 (𝑠 (𝑑2

1
𝑑 𝑗 + 𝑑1𝑑

2

𝑗
)) arith-

metic operations in Z𝑝 since 𝑑 𝑗 ≥ 𝑑𝑎 𝑗 for 1 ≤ 𝑗 ≤ 𝑛. Similarly, the

total cost of step 11 is 𝑂 (𝑠𝑑𝑏1𝑑𝑏 𝑗𝐶𝑏 ) + 𝑂 (𝑠 (𝑑𝑏2

1
𝑑𝑏 𝑗 + 𝑑𝑏1𝑑𝑏

2

𝑗
)) ⊆

𝑂 (𝑠𝑑1𝑑 𝑗𝐶𝑏 ) +𝑂 (𝑠 (𝑑2

1
𝑑 𝑗 + 𝑑1𝑑

2

𝑗
)).

For step 13, we use Brown’s dense GCD algorithm [3] to compute

the GCD of 𝐴𝑘 and 𝐵𝑘 in Z𝑝 [𝑥1, 𝑥 𝑗 ]. Brown’s algorithm uses eval-

uation and interpolation on 𝑥 𝑗 . It does 𝑂 (𝑑2

1
𝑑 𝑗 + 𝑑1𝑑

2

𝑗
) arithmetic

operations in Z𝑝 . The total cost of step 13 is 𝑂 (𝑠 (𝑑2

1
𝑑 𝑗 + 𝑑1𝑑

2

𝑗
))

arithmetic operations in Z𝑝 .
For step 15, we again use Brown’s GCD algorithm which does

𝑂 (𝑑𝑔2

1
𝑑𝑔 𝑗 + 𝑑𝑔1𝑑𝑔

2

𝑗
) arithmetic operations in Z𝑝 . The division in

Z𝑝 [𝑥1, 𝑥 𝑗 ] in step 16 can also be done with 𝑂 (𝑑𝑔2

1
𝑑𝑔 𝑗 + 𝑑𝑔1𝑑𝑔

2

𝑗
)

arithmetic operations in Z𝑝 using evaluation and interpolation on

𝑥 𝑗 . Since 𝑑𝑔1 ≤ 𝑑1 and 𝑑𝑔 𝑗 ≤ 𝑑 𝑗 the total cost of steps 15 and 16 is

𝑂 (𝑠 (𝑑2

1
𝑑 𝑗 + 𝑑1𝑑

2

𝑗
)) arithmetic operations in Z𝑝 .

Step 19 evaluates
ˆ𝑓𝜌,𝑗−1 (𝑥1, 𝛽

𝑘
2
, ..., 𝛽𝑘

𝑗−1
) for 1 ≤ 𝜌 ≤ 𝑟 . If we

first compute the powers of 𝛽𝑘
𝑖
using

∑𝑗−1

𝑖=2
𝑑𝑔𝑖 ≤ ( 𝑗 − 2)𝐷 mul-

tiplications, we can evaluate the terms in the factors
ˆ𝑓𝜌,𝑗−1 us-

ing ( 𝑗 − 2)∑𝑟
𝜌=1

#
ˆ𝑓𝜌,𝑗−1 multiplications. Since 𝑗 − 2 < 𝑛 and

#
ˆ𝑓𝜌,𝑗−1 ≤ #𝑓𝜌 , the total cost of step 19 is 𝑂 (𝑠𝑛𝐷 + 𝑠𝑛∑𝑟

𝜌=1
# 𝑓𝜌 ))

arithmetic operations in Z𝑝 .
For step 22, we useMonagan and Paluck’s bivariate Hensel lifting

algorithm from [15, 16] which does 𝑂 ( ˜𝑑1

2
˜𝑑 𝑗 + ˜𝑑1

˜𝑑 𝑗
2) arithmetic

operations in Z𝑝 . The total cost of step 22 is𝑂 (𝑠 ( ˜𝑑1

2
˜𝑑 𝑗 + ˜𝑑1

˜𝑑 𝑗
2)) ⊆

𝑂 (𝑠 (𝑑2

1
𝑑 𝑗 + 𝑑1𝑑

2

𝑗
)).

Using Zippel’s algorithm [21], the cost of solving the Vander-

monde system in step 29 for the coefficients of any given factor

ˆ𝑓𝜌,𝑗−1 is
˜𝑑 𝑗
∑𝑑𝑓𝜌−1

𝑖=0
𝑂 (𝑠2

𝜌,𝑖
) ⊆ 𝑂 ( ˜𝑑 𝑗𝑠# ˆ𝑓𝜌,𝑗−1) since

∑𝑑𝑓𝜌−1

𝑖=0
𝑠𝜌,𝑖 <

#
ˆ𝑓𝜌,𝑗−1 . The total cost to solve for the coefficients of all factors

ˆ𝑓𝜌,𝑗

is 𝑂 (𝑠 ˜𝑑 𝑗
∑𝑟

𝜌=1
#

ˆ𝑓𝜌,𝑗−1) ⊆ 𝑂 (𝑠𝑑 𝑗
∑𝑟

𝜌=1
#𝑓𝜌 ).

Summing the costs, the total number of arithmetic operations in

Z𝑝 for Algorithm CMBBSHLGCDstepj to recover 𝑥 𝑗 is

𝑂 (𝑠 (𝑑2

1
𝑑 𝑗 + 𝑑1𝑑

2

𝑗 + 𝑑1𝑑 𝑗 (𝐶𝑎+𝐶𝑏 ) + (𝑛+𝑑 𝑗 )
𝑟∑︁

𝜌=1

#𝑓𝜌 + 𝑛𝐷)) . (3)

Since 𝑑 𝑗 ≤ 𝐷 , the 𝑠 ≤ 𝑠max, and

∑𝑟
𝜌=1

#𝑓𝜌 = #𝐹 , summing (3) for

𝑗 = 2, 3, ..., 𝑛 gives (2). □

4.2 MHLBBPGCD Complexity
The following theorem gives the complexity of the Algorithm 1:

MHLBBPGCD for computing monic(pp(gcd(𝑎, 𝑏), 𝑥1)).

Theorem 4.2. Let 𝑝 be a large prime and let 𝑎, 𝑏 ∈ Z[𝑥1, ..., 𝑥𝑛] and
let 𝑔 = monic(pp(gcd(𝑎, 𝑏), 𝑥1)) mod 𝑝 . If algorithm MHLBBPGCD

returns an answer that is not FAIL, the total number of arithmetic

operations in Z𝑝 in the worst case for computing 𝑔 using Algorithm

MHLBBPGCD is

𝑂

(
𝑛 𝑠max

(
𝐷2 (𝐷 +𝐶𝑎 +𝐶𝑏 ) + (𝑛 + 𝐷)#𝐹 + 𝑛𝐷

))
. (4)

From (4) the number of probes to B𝑎 and B𝑏 is 𝑂 (𝑛𝐷2𝑠max).

Proof. Step 2 of Algorithm MHLBBGCD makes 𝑂 (𝑑𝑎1) probes
to B𝑎 and does 𝑂 (𝑑𝑎2

1
) arithmetic operations in Z𝑝 to interpolate

𝑎1 in Z𝑝 [𝑥1]. Similarly, step 4 makes𝑂 (𝑑𝑏1) probes to B𝑏 and does

𝑂 (𝑑𝑏2

1
) arithmetic operations in Z𝑝 to interpolate 𝑏1 in Z𝑝 [𝑥1]. In

step 6, the Euclidean algorithm does 𝑂 (𝑑𝑎1𝑑𝑏1) arithmetic opera-

tions in Z𝑝 to compute 𝑔1 and step 8 needs 𝑂 (𝑑𝑎1𝑑𝑏1) arithmetic

operations in Z𝑝 to compute the square-free factorization of 𝑔1 (see

[8]). These costs are dominated by the cost of Algorithm CMBB-

SHLGCD in step 10 which does 𝑂 ((𝑛 − 1)𝑠max (𝑑1𝐷 (𝑑1+𝐷+𝐶𝑎 +
𝐶𝑏 ) + (𝑛+𝐷)#𝐹 +𝑛𝐷)) arithmetic operations in Z𝑝 by Theorem 4.1.

The theorem follows since 𝑑1 ≤ 𝐷 . □

4.3 BBMGCD Complexity
In this section, we state the complexity of Algorithm 4: BBMGCD.

Theorem 4.3. Let 𝑎, 𝑏 ∈ Z[𝑥1, ..., 𝑥𝑛] and 𝑔 = pp(gcd(𝑎, 𝑏), 𝑥1)
be the primitive part of gcd(𝑎, 𝑏) in 𝑥1. If Algorithm BBMGCD

returns an answer that is not FAIL, the total number of arithmetic

operations in Z𝑝 in the worst case for computing monic(𝑔) is

𝑂

(
#𝑝 𝑛 𝑠max

(
𝐷2 (𝐷+𝐶𝑎+𝐶𝑏 ) + (𝑛+𝐷)#𝐹 + 𝑛𝐷

)
+ #𝐹 #𝑝2

)
(5)

where #𝑝 is the number of primes needed to recover the rational

coefficients in monic(𝑔). From (5), the total number of probes to

B𝑎 and B𝑏 is 𝑂 (#𝑝 𝑛 𝐷2𝑠max) .

Proof. The cost of interpolating 𝑎𝑖 in step 6 using Algorithm 4

is 𝑂 (𝑑𝑎2

𝑖
). Therefore the total cost of step 6 is 𝑂 (𝑛𝑑𝑎2

𝑖
) ⊆ 𝑂 (𝑛𝐷2).

Similarly, the total cost of step 7 is 𝑂 (𝑛𝑑𝑏2

𝑖
) ⊆ 𝑂 (𝑛𝐷2). The cost of

step 8 is𝑂 (𝑑2

𝑖
), so the total cost of step 8 is𝑂 (𝑛𝑑2

𝑖
) ⊆ 𝑂 (𝑛𝐷2). The

costs of steps 6, 7, and 8 are dominated by the cost of step 13.

Let #𝑝 be the number of primes needed to recover the rational

coefficients of monic(𝑔). Since Algorithm BBMGCD uses 62 bit

primes, #𝑝 is linear in the length of the largest rational number in
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𝑛 #𝑔 #pp(𝑔, 𝑥1 ) 𝑠max time (pp only) eval BB #probes time #probes time #probes

4 2 2 1 0.064 (0.064) 0.00 (0.00) 642 (642) 0.039 408 0.042 264

6 6 4 2 0.235 (0.141) 0.04 (0.00) 3984 (2690) 0.083 1690 0.100 1090

8 24 8 3 0.792 (0.306) 0.22 (0.02) 14814 (7842) 0.410 10632 0.592 6828

10 120 16 6 2.276 (0.780) 0.97 (0.05) 47548 (24242) 2.912 71594 4.503 46142

12 720 32 10 6.082 (1.770) 3.08 (0.17) 131498 (61970) 37.039 722956 56.967 468120

14 5040 64 20 16.303 (4.514) 9.47 (0.48) 358424 (176066) 2758.584 30316188 FAIL -

16 40320 128 35 43.817 (10.688) 28.01 (1.36) 910318 (432706) FAIL - FAIL -

18 362880 256 70 124.87 (28.860) 85.92 (3.10) 2343028 (1167122) FAIL - FAIL -

20 3628800 512 126 384.785 (70.737) 290.18 (9.28) 5740202 (2788082) FAIL - FAIL -

Table 1: Benchmark 1: Timings in CPU seconds

𝑔. The cost of using the MHLBBPGCD algorithm in step 13 is given

in Theorem 4.2. Thus, the total cost of step 13 is

𝑂

(
#𝑝 𝑛 𝑠max

(
𝐷2 (𝐷+𝐶𝑎+𝐶𝑏 ) + (𝑛+𝐷)#𝐹𝐷 + 𝑛𝐷

))
.

Since the #𝑝 primes are of bounded size, the cost of Chinese remain-

dering and rational number reconstruction are both 𝑂 (#𝑝2) (see
[8]). So the total cost of recovering all #𝐹 rational coefficients of

the factors 𝑓𝜌 in steps 18 and 19 is 𝑂 (#𝐹#𝑝2). The cost of steps 21
to 25 is dominated by the cost of step 13. Adding the costs of steps

13, 18 and 19 gives (5).

□

5 BENCHMARKS
We present three timing benchmarks with each benchmark exe-

cuted in Maple 2024. All timings were obtained using one core on

a server with 128 gigabytes of RAM and two Intel Xeon E5-2680

processors running at 2.80GHz base and 3.60GHz turbo.

Let 𝑎, 𝑏 ∈ Z[𝑥1, ..., 𝑥𝑛], 𝑔 = gcd(𝑎, 𝑏), 𝑐 = 𝑎/𝑔 and 𝑑 = 𝑏/𝑔.
For comparison, we’ve created two additional algorithms which

compute monic(𝑔). For the first algorithm, we create a modular

black box for computing 𝑓 = 𝑎/𝑏 and use the sparse rational func-

tion interpolation algorithm proposed by Kaltofen and Yang [13]

which outputs black boxes for computing 𝑐 (𝜎𝜎𝜎) and 𝑑 (𝜎𝜎𝜎) for a given
point 𝜎𝜎𝜎 ∈ Z𝑛𝑝 . From this we can compute 𝑔(𝜎𝜎𝜎) = 𝑎(𝜎𝜎𝜎)/𝑐 (𝜎𝜎𝜎). We

combined this method with Ben-Or/Tiwari sparse interpolation [1]

to interpolate 𝑔 mod 𝑝 . We then used our BBMGCD algorithm to

find monic(𝑔) using Chinese remaindering and rational number

reconstruction.

For the second algorithm, we modify the black box GCD algo-

rithm proposed by Kaltofen and Diaz in [7] tomake it into amodular

algorithm. Kaltofen and Diaz’s algorithm creates a black box B𝑔
such that B𝑔 (𝜎𝜎𝜎) computes 𝑔(𝜎𝜎𝜎). Instead, we create a modular black

box for computing 𝑔(𝜎𝜎𝜎) mod 𝑝 and combine the modular black

box with Ben-Or/Tiwari sparse interpolation and our BBMGCD

algorithm to compute monic(𝑔), again using Chinese remaindering

and rational number reconstruction. We shall refer to these new

algorithms as the “Kaltofen-Yang” algorithm and “Kaltofen-Diaz”

algorithm respectively.

Our first benchmark is taken from Kaltofen-Diaz [7]. Let

𝑉1 =


1 𝑥1 𝑥2

1
· · · 𝑥𝑛

1

1 𝑥2 𝑥2

2
· · · 𝑥𝑛

2

.

.

.
.
.
.

.

.

.
. . .

.

.

.

1 𝑥𝑛 𝑥2

𝑛 · · · 𝑥𝑛𝑛


.

𝑉1 is an 𝑛 × 𝑛 Vandermonde matrix in the variables [𝑥1, 𝑥2, ..., 𝑥𝑛].
Let𝑉2 be an𝑛×𝑛 Vandermondematrix in [𝑥1, ..., 𝑥𝑛/2, 𝑦𝑛/2+1, ..., 𝑦𝑛].
We create two modular black boxes B𝑎, B𝑏 : (Z𝑛, 𝑝) → Z𝑝 such

that B𝑎 and B𝑏 return the determinants of 𝑉1 and 𝑉2 respectively

evaluated at a point modulo a prime 𝑝 . We compute the GCD of B𝑎
and B𝑏 , namely

gcd(det(𝑉1), det(𝑉2)) =
𝑛/2−1∏
𝑖=1

𝑛/2∏
𝑗=𝑖+1
(𝑥𝑖 − 𝑥 𝑗 ) . (6)

Table 1 shows the CPU timings (in seconds) for our new algo-

rithm compared against the Kaltofen-Yang (KY) and Kaltofen-Diaz

(KD) algorithms to compute (6). All algorithms use the two primes

𝑝 = 2
61 + 15 and 𝑝 = 2

61 + 21 to compute the GCD. Column

#𝑔 is the number of terms in 𝑔, column #pp(𝑔, 𝑥1) is the number

of terms in pp(𝑔, 𝑥1), column 𝑠max is the largest 𝑠 used by Algo-

rithm 3, and column #probes is the number of times each algo-

rithm had to probe a black box. Column “eval BB” is the time

(in seconds) used by Algorithm 3 to probe the black boxes prior

to bivariate interpolation (steps 9 and 11). For our BBMGCD algo-

rithm, the timings given in brackets are the time needed to compute

pp(gcd(det(𝑉1), det(𝑉2)), 𝑥1) only. This illustrates the advantage
of not computing cont(𝑔, 𝑥1).

Our algorithm is faster than both the Kaltofen-Yang and Kaltofen-

Diaz algorithms when 𝑛 ≥ 10. Ben-Or/Tiwari sparse interpolation

is relatively fast when interpolating polynomials with a small num-

ber of terms. This partially explains why both the Kaltofen-Yang

and Kaltofen-Diaz algorithm outperform our BBMGCD algorithm

when 𝑛 is small. In Table 1, FAIL means the Ben-Or/Tiwari sparse

interpolation needed a prime greater than 2
63

which we have not

implemented and it would be slow. When computing cont(𝑔, 𝑥1),
our algorithm spends the largest amount of time on probing the

black boxes for interpolations for 𝑛 ≥ 12.

Our second benchmark is taken from Monagan and Huang [11].

We want to calculate the GCD of two polynomials with 𝑛 = 5

variables. We create the polynomial𝐺 with 𝑠 terms and polynomials

𝐶 and 𝐷 with 𝑡 terms where each monomial is chosen randomly

from the set of monomials with a total degree of at most 10 and each

integer coefficient is chosen randomly from [−99, 99]. We create the

modular black boxes B𝐴 and B𝐵 which evaluate the polynomials

𝐴 = 𝐺𝐶 and 𝐵 = 𝐺𝐷 at a point modulo a prime 𝑝 . Since𝐺,𝐶, 𝐷 are

created randomly, we have 𝐺 = gcd(𝐴, 𝐵) and 𝐺 is square-free and

has no polynomial content which is a worst case for our algorithm.

Table 2 uses the same algorithms and terms as Table 1.



ISSAC ’25, July 28 – August 1, 2025, Guanajuato, Mexico Michael Monagan and Garrett Paluck

BBMGCD KY KD

#𝑔 𝑡 𝑠max time #probes time #probes time #probes

10 1000 6 0.984 17965 0.188 2113 0.204 2016

100 500 40 2.912 70631 1.121 15981 1.459 15680

250 250 73 4.409 111019 2.788 35585 3.452 34584

500 100 104 5.632 128151 6.774 70861 8.207 68654

1000 10 156 8.172 134659 19.536 141256 22.374 137048

Table 2: Benchmark 2: Timings in CPU seconds

We see a similar result as the previous benchmark. The Kaltofen-

Yang and Kaltofen-Diaz algorithms outperform our BBMGCD al-

gorithm when recovering a GCD with a relatively few terms. Our

algorithm becomes faster for GCDs with many terms.

Our third benchmark is similar to the second. We generate the

polynomials 𝐺 =
∏𝑛

𝑖=1
(𝑥𝑖 + 1)𝑚 , 𝐶 =

∏𝑛
𝑖=1
(𝑥𝑖 + 2)𝑚 , and 𝐷 =∏𝑛

𝑖=1
(𝑥𝑖 + 3)𝑚 for 𝑛 = 5 variables. We then create two modular

black boxes B𝐴 and B𝐵 which evaluate the polynomials 𝐴 = 𝐺𝐶

and 𝐵 = 𝐺𝐷 modulo a prime 𝑝 . The timings for the third benchmark

are presented in Table 3.

BBMGCD KY KD

𝑛 #𝑔 𝑠max time #probes time #probes time #probes

1 32 1 0.268 1872 1.627 12346 1.288 8312

2 243 1 1.351 5548 31.074 123216 22.826 82308

3 1,024 1 2.684 11160 301.603 1125026 225.901 750264

4 3,125 1 4.858 18708 1097.504 3510292 906.960 2340524

5 7,776 1 7.460 28192 3388.021 9677706 5146.178 6452216

6 16,807 1 10.296 39612 FAIL - FAIL -

7 32,768 1 14.403 52968 FAIL - FAIL -

8 59,049 1 19.343 68260 FAIL - FAIL -

9 100,000 1 26.660 85488 FAIL - FAIL -

10 161,051 1 29.823 104652 FAIL - FAIL -

Table 3: Benchmark 3: Timings in CPU seconds

As our algorithm only has to lift to sqf(𝐺) when calling the

CMBBSHLGCD algorithm, it does significantly fewer probes to

B𝑎 and B𝑏 than the Kaltofen-Yang and Kaltofen-Diaz algorithms.

Benchmark 3 is a best case for our algorithm.

6 IMPLEMENTATION NOTES
We have implemented our new black box GCD algorithm in Maple

with some subroutines coded in C. Our code is available for down-

load at http://www.cecm.sfu.ca/~mmonagan/code/BBMGCD/

For Algorithm 3 CMBBSHLGCDstepj we have implemented the

bivariate interpolations in steps 9 and 11 in C.

In Algorithm 3 we use Maple’s GCD algorithm to compute

gcd(𝑎1, 𝑏1) in Z𝑝 [𝑥1, 𝑥 𝑗 ] which is coded in C.

The bivariate Hensel lift in step 22 of Algorithm 3 is coded in C.

We use our algorithm from [16].

For step 28 in Algorithm 3, we solve a Vandermonde system

of dimension 𝑠𝜌,𝑖 . We coded Zippel’s algorithm [21] in C. It does

𝑂 (𝑠2

𝜌,𝑖
) arithmetic operations in Z𝑝 .

We have performed several optimizations to our black box im-

plementations in Benchmark 1 in order to speed up the black box

probes. Our black boxes compute det(𝑉1) and det(𝑉2) evaluated at

a point𝛼𝛼𝛼 ∈ Z2𝑛
𝑝 using the formula det(𝑉1) =

∏𝑛−1

𝑖=1

∏𝑛
𝑗=𝑖+1 (𝑥𝑖 −𝑥 𝑗 )

and similarly for det(𝑉2). For Benchmark 2, we do not expand the

polynomials 𝐴 = 𝐶𝐺 and 𝐵 = 𝐷𝐺 in our black boxes. Instead, we

evaluate 𝐶, 𝐷 and 𝐺 independently, then return the products.

Two placeswherewe need to evaluate polynomials inZ𝑝 [𝑥1, ..., 𝑥𝑛]
are the partial factors in step 19 of Algorithm 3 and the polynomial

ˆ𝑓 in steps 16 and 17 of Algorithm 1. We perform these multivariate

polynomial evaluations modulo a 62 bit prime 𝑝 using a C program

for efficiency. Since Maple has two representations for polynomials

in Z[𝑥1, ..., 𝑥𝑛], namely, the old SUM-OF-PROD representation and

the new POLY representation (see [17]), we must handle both repre-

sentations. Even with these evaluations coded in C, often more than

50% of the time is spent in these evaluations on our benchmarks.

Table 4 gives a timing breakdown for the main steps of Algorithm

3 for benchmark 1 for 𝑛 = 20.

Operation time(s)

Compute monomial evaluations (step 4) 1.01

Probe B𝑎 and B𝑏 for interpolation (steps 9,11) 290.18

Perform bivariate interpolation (steps 9,11) 34.39

Compute bivariate GCD (step 13) 42.70

Compute 2nd bivariate GCD (step 15) 3.20

Compute square-free part of GCD (step 16) 0.03

Evaluate
ˆ𝑓𝜌,𝑗−1 (𝑥1, 𝑌𝑘 ) (step 19) 1.69

Perform BivariateHenselLift (step 22) 0.40

Solve Vandermonde systems (step 29) 5.32

Other operations 5.58

Total 384.50

Table 4: Algorithm 3 breakdown for Benchmark 1 for 𝑛 = 20

7 CONCLUSION
In this paper, we have contributed a new algorithm for comput-

ing the multivariate GCD of sparse polynomials represented by

black boxes. Our benchmarks show that our algorithm is better or

comparable to the Kaltofen-Yang and Kaltofen-Diaz black box GCD

algorithms. We gave a complexity analysis for our new algorithm

but have yet to complete a failure probability analysis.

We designed our algorithm to interpolate the square-free factors

of 𝑔 = gcd(𝑎, 𝑏) which gives it an advantage when the square-free

factors are smaller than 𝑔. We could design it to instead recover the

irreducible factors of 𝑔 over Z by lifting a factorization of 𝑔(𝑥1,𝛼𝛼𝛼)
over Z. This would be faster for benchmark 1 where the factors

all have 2 terms. We chose not to do this because of the additional

cost of a factorizaton in Z[𝑥] and because it makes the algorithm

more complicated. Computing a square-free factorization is easy

and does not increase the cost.

We note that the main for loop in line 7 of Algorithm 3 CMBB-

SHLGCDstepj can be parallelized. To reduce the number of black

box probes we are looking at interpolating 𝑥 𝑗 in𝐺𝑠 𝑓 (𝑥1, 𝑥 𝑗 ) in line

17 of Algorithm 3 from images of 𝐺𝑠 𝑓 (𝑥1, 𝛽𝑖 ) for 𝛽𝑖 ∈ Z𝑝 .
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