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Abstract. Let f1 and f2 be two multivariate polynomials over an al-
gebraic number field Q(α1, . . . , αn). In this paper, we present MRES, a
modular algorithm for computing the resultant of f1 and f2. To enhance
the efficiency, our algorithm converts f1 and f2 to their corresponding
polynomials over Q(γ) where γ is a primitive element of Q(α1, . . . , αn).
This conversion is done modulo a prime to prevent the coefficient growth.
Next, our algorithm employs evaluation and dense interpolation to re-
duce the problem to the computation of the resultant of two univariate
polynomials where we apply the monic Euclidean algorithm. Employing
the monic Euclidean algorithm, we present a new formula for computing
the resultant of univariate polynomials. Finally, our modular algorithm
applies the Chinese remaindering and the rational number reconstruction
to recover the rational coefficients of the resultant.
We have implemented our algorithm in Maple. We include the expected
time complexity of the algorithm, two benchmarks, and a partial failure
probability analysis.
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tive Elements.

1 Introduction

Computing the resultant of two polynomials plays a significant role across various
areas of mathematics. Resultants appear as a subproblem in solving systems of
multivariate polynomials, elimination theory [5] and factorization of polynomials
over algebraic fields [10].

In this paper, we are interested in computing the resultant of two multivariate
polynomials over an algebraic number field Q(α1, . . . , αn). In 1971, Collins [4]
introduced a modular algorithm to compute the resultant of multivariate polyno-
mials over Z. In 2002, based on previous work by Encarnacion [6], Monagan and
van Hoeij [11] designed a modular GCD algorithm for Q(α1, . . . , αn)[x]. In 2023,
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Ansari and Monagan [1] designed a modular GCD algorithm that reduces the gcd
problem over Q(α1, . . . , αn) to gcd calculation over Q(γ) where γ is a primitive
element of Q(α1, . . . , αn). Given f1, f2 ∈ Q(α1, . . . , αn)[x1, . . . , xk, y], we build
upon [4,11] and [1] to compute r = res(f1, f2, y) ∈ Q(α1, . . . , αn)[x1, . . . , xk].

1.1 Computing over Q(α1, . . . , αn)

Let Q(α1, . . . , αn) be our number field. Let L0 = Q and Li = Li−1[zi]/〈Mi(zi)〉
whereMi(zi) is the minimal polynomial of αi over Li−1 for 1 ≤ i ≤ n. Let L = Ln
and di = deg(Mi, zi). The field L is isomorphic to Q[z1, . . . , zn]/〈M1, . . . ,Mn〉
and it can be specified as a Q-vector space of dimension d =

∏n
i=1 di. Further-

more,BL = {
∏n
i=1(zi)

ei | 0 ≤ ei < di} is a basis of L. To compute in Q(α1, . . . , αn),
we use the fact that Q(α1, . . . , αn) ∼= L. Thus, we just need to map elements
from Q(α1, . . . , αn) to L and compute over L. In our algorithm, we suppose
that we are given the minimal polynomials M1(z1), . . . ,Mn(zn) of the algebraic
numbers α1, . . . , αn.

Let f =
∑
ei∈Zk

≥0
aeiX

ei ∈ L[x1, . . . , xk, y]. Since BL is a basis for L, we have

aei =
∑d
j=1 Ceijbj for bj ∈ BL and Ceij ∈ Q. We define the coordinate vector

of f w.r.t. BL as the vector of dimension d, denoted by [f ]BL
= [v1, . . . , vd]

T ,
where vj =

∑
ei∈Zk

≥0
CeijX

ei .

Example 1. Let Q(
√

5,
√

11) ∼= L where L = Q[z1, z2]/〈z2
1 − 5, z2

2 − 11〉 with
φ(
√

5) = z1 and φ(
√

11) = z2. Let BL = {1, z2, z1, z1z2} be a basis for L. If
f = 3z1x+ 2y + z2 + 4z1z2 ∈ L[x, y], then [f ]BL

= [2y, 1, 3x, 4]T .

Our modular resultant algorithm, which we call MRES, incorporates a pre-
processing step to remove fractions. It replaces the minimal polynomials M1(z1),
. . ., Mn(zn) and the input polynomials f1, f2 with their semi-associates, defined
in Definition 1.

Definition 1. Let LZ = Z[z1, . . . , zn]. For any f ∈ L[x], the denominator of
f , denoted by den(f), is the smallest positive integer such that den(f)f ∈ LZ[x].
The associate of f is defined as f̃ = den(h)h where h = monic(f). The semi-
associate of f , denoted by f̌ , is defined as rf , where r is the smallest positive
rational number for which den(rf) = 1.

Example 2. Consider L as described in Example 1 and let f = 7
5z1x+z2 ∈ L[x].

We have den(f) = 5, monic(f) = x+ 1
7z1z2, f̃ = 7x+ z1z2, and f̌ = 7z1x+ 5z2.

When lc(f1) and lc(f2) are complicated algebraic numbers, computing asso-
ciates can be expensive. Instead, by employing semi-associates we can effectively
remove fractions from the inputs. After eliminating fractions from the inputs,
Algorithm MRES computes res(f1, f2) modulo a sequence of primes. Let p be
a prime such that p -

∏n
i=1 lc(M̌i) · lc(f̌1) · lc(f̌2). Let mi(zi) = M̌i mod p for

1 ≤ i ≤ n. Define Lp = Zp[z1, . . . , zn]/〈m1, . . . ,mn〉. The finite ring Lp has pd

elements which may include zero divisors. To reconstruct the rational coefficients
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of the potential resultant, MRES employs the Chinese remaindering (CRT) and
rational number reconstruction (RNR) [12,8], respectively. Example 3 demon-
strates how MRES manages zero-divisors in Lp and it emphasizes the rationale
for employing a primitive element.

Example 3. Let f1 = x3 + 1
5yz2 − z1 and f2 = z2x + 4yz1 be two polynomials

over L = Q[z1, z2]/〈z2
1 − 2, z2

2 − 7〉 and let M1(z1) = z2
1 − 2 and M2(z2) = z2

2 − 7.
Assume that MRES chooses the prime p1 = 7. Thus, m1 = M1 mod p1 = z2

1 +5,
m2 = M2 mod p1 = z2

2 and

Lp1
= Z7[z1, z2]/〈 z2

1 + 5, z2
2 〉.

Next, MRES picks an evaluation point y = β ∈ Z7 and attempts to compute the
res(f1(x, β), f2(x, β), x) ∈ Lp1

using the monic Euclidean algorithm (MEA) (see
Theorem 4). However, the MEA fails since the lc(f2(x, β)) = z2 is not invertible
over Lp1 . Since MRES cannot identify whether this failure is due to the choice of
the prime p1 or the evaluation point β, it aborts the computation of res(f1, f2)
modulo p1 and tries another prime, say p2 = 3. In this case, we have

Lp2
= Z3[z1, z2]/〈 z2

1 + 1, z2
2 + 2 〉.

MRES picks y = β ∈ Z3 randomly and computes res(f1(x, β), f2(x, β)) ∈ Lp2

using the MEA. This time lc(f2(x, β)) = z2 is a unit in Lp2 and the MEA
succeeds and outputs res(f1(x, β), f2(x, β)) ∈ Lp2 . MRES iterates this proce-
dure for additional β values and primes and eventually recovers res(f1, f2, x) =
128z1y

3 − 49
5 y+ 7z1z2 through polynomial interpolation for y, followed by CRT

and RNR [12,8] to recover the coefficients 128,− 49
5 and 7.

The majority of computational tasks within MRES take place within the
finite ring Lp. To speed up MRES, we employ a primitive element to speed
up arithmetic operations within Lp. That is, instead of computing over a ring
with multiple extensions, Lp, we do the computation over a quotient ring with
a single extension. Furthermore, our Maple implementation of MRES utilizes
31-bit primes avoiding zero-divisors in Lp with high probability.

1.2 Organization of the Paper

Following a review of preliminaries in Section 2, we present an algorithm to com-
pute the resultant of two univariate polynomials over L. In Section 3, we present
our modular algorithm, MRES, and its subalgorithms. Some implementation de-
tails and two timing benchmarks are described in Section 4. We compute the
expected time complexity of the MRES algorithm in Section 5. Finally, in Section
6, we study the failure probability of our MRES algorithm.

2 Preliminaries
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2.1 Mapping Q(α1, . . . , αn) to a single extension Q(γ)

We use Ansari and Monagan’s method in [1] to identify a primitive element for
Q(α1, . . . , αn) called γ and compute its minimal polynomial. To do so, Ansari
and Monagan used Algorithm 1 over F = Zp where p is a 31-bit prime. Then, they
construct the quotient ring L̄p = Zp[z]/〈M(z)〉 where M(z) is the characteristic
polynomial of γ modulo p.

Algorithm 1: LAminpoly

Require: A list of the minimal polynomials [m1(z1), . . . ,mn(zn)], the ground field
F = Zp over which the computation is performed, and
γ = z1 + C1z2 + . . .+ Cn−1zn where 0 6= Ci ∈ Z for 1 ≤ i ≤ n− 1

Ensure: Either a message FAIL or a polynomial M(z) ∈ F[z] such that M(γ) = 0,
the matrix A and A−1 .

1: BLp = {
∏n
i=1(zi)

ei 0 ≤ ei < di } s.t. di = deg(mi(zi)) // A basis for Lp
2: d =

∏n
i=1 di

3: Initialize A to be a d× d zero matrix over F.
4: g0 = 1
5: for i = 1 to d do
6: Set column i of A to be [gi−1]BLp

7: gi = γ · gi−1

8: end for
9: if det(A) = 0 then return(FAIL) end if

10: Compute A−1 and set q = A−1 · (−[gd]BLp
)

11: Construct the polynomial M(z) = zd + qdz
d−1 + . . .+ q2z + q1

12: return( M(z), A, A−1 )

Example 4. Let Q(
√

2,
√

3
√

2 + 1) and M1(z1) = z2
1 − 2 be the minimal polyno-

mial of α1 =
√

2 over Q and M2(z2) = z2
2 − 3z1 + 1 be the minimal polynomial

of α2 =
√

3
√

2 + 1 over Q[z1]/〈z2
1 − 2〉. Thus

Q(
√

2,
√

3
√

2 + 1) ∼= L = Q[z1, z2]/〈z2
1 − 2, z2

2 − 3z1 + 1〉.

Let us choose p = 7 so the ground field is F = Z7. After reducing minimal
polynomials modulo p, we have L7 = Z7[z1, z2]/〈z2

1 + 5, z2
2 + 4z1 + 1〉. The

dimension of L7 as a Q−vector space is 4 and BLp
= {1, z2, z1, z1z2} is a basis

for it. We aim to find a primitive element γ such that Z7(γ) ∼= L7, and compute
its characteristic polynomial M(z) so we can construct L̄7 = Z7[z]/〈M(z)〉 such
that L̄7

∼= L7. Let us try γ = 2z1 + z2. We first construct the 4 × 4 matrix A
whose i’th column in [γi]BLp

for 0 ≤ i ≤ 3. We obtain

A =


1 0 7 36
0 1 0 23
0 2 3 10
0 0 4 3

 .
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Since det(A) = 153 mod 7 6= 0, we consider γ = 2z1 + z2 as a primitive element

of Z7(
√

2,
√

3
√

2 + 1). Since 153 = 32 · 17, if we had chosen p = 3 or p = 17,
then det(A) = 0 mod p and A would not be invertible. We call 3 and 17 det-
bad primes and define them in Section 3.2. Computing q = A−1 · (−[γ4]BL

),
we construct the characteristic polynomial M(z) = z4 + z and finite ring L̄7 =
Z7[z]/〈z4 + z〉.

If det(A) 6= 0, we can define the isomorphism φγ : Lp −→ L̄p. To do so, let
BLp

and BL̄p
be bases for Lp and L̄p, respectively. Let C : Lp −→ Zdp be a

bijection such that C(a) = [a]BLp
. Let D : L̄p −→ Zdp be another bijection such

that D(b) = [b]BL̄p
. Define φγ : Lp −→ L̄p with φγ(a) = D−1(A−1 · C(a)).

Furthermore, φ−1
γ : L̄p −→ Lp is given by φ−1

γ (b) = C−1(A ·D(b)).

Lemma 1. (See Lemma 1 in [1]) If det(A) 6= 0, then the mapping φγ defined
above is a ring isomorphism.

Isomorphism φγ induces the natural isomorphism φγ : Lp[x1, . . . , xk, y] −→
L̄p[x1, . . . , xk, y]. Example 5 illustrates how φγ works.

Example 5. We continue Example 4, where L7 = Z7[z1, z2]/〈z2
1 −2, z2

2 −3z1 + 1〉
and L̄7 = Z7[z]/〈z4 + z〉. Let BL̄7

= {1, z, z2, z3} and BL7
= {1, z2, z1, z1z2} be

bases for L̄7 and L7, respectively. Let f = x2z1z2 + 2xy+ z2 ∈ L7[x, y]. We wish
to compute φγ(f) ∈ L̄7[x, y]. To do so, we first need to compute C(f) = [f ]BLp

=

[2xy, 1, 0, x2]T which is the coordinate vector of f relative to BLp
. Then, we have

b = A−1 · C(f) = A−1[f ]BLp
= [3x2 + 2xy + 1, 6x2 + 3, 6x2 + 6, 4x2 + 6]T

as the coordinate vector of φγ(f) relative to BL̄p
= {1, z, z2, z3}. Consequently,

φγ(f) = (4x2 + 6)z3 + (6x2 + 6)z2 + (6x2 + 3)z + 3x2 + 2xy + 1 ∈ L̄7[x1, x2].

2.2 Resultants

Let R be a commutative ring with identity 1 6= 0.

Definition 2. Let f1 =
∑m
j=0 ajy

j and f2 =
∑n
j=0 bjy

j be two non-zero poly-
nomials where m = deg(f1, y), n = deg(f2, y), and aj , bj ∈ R[x1, . . . , xk]. The
Sylvester matrix of f1 and f2 w.r.t. the variable y is the (m+n)×(m+n) matrix

sylv(f1, f2, y) =



am · · · a0

am · · · a0

. . .

am · · · a0

bn · · · b0
. . .

bn · · · b0


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in which there are n rows of f1 coefficients, m rows of f2 coefficients, and all
entries not shown are zero. The resultant of f1 and f2 w.r.t. the variable y is
defined as

res(f1, f2, y) = det(sylv(f1, f2, y))

which is a polynomial in R[x1, . . . , xk]. If f1, f2 are univariate polynomials in
R[x], we write res(f1, f2) for res(f1, f2, x).

Theorem 1. (See theorem 9.2 and 9.3 of [7]) Let f1, f2 ∈ R[x] with deg f1 =
m > 0 and deg f2 = n > 0. Let c ∈ R and φ : R → S be a ring homomorphism.
Then

(i) res(c, f2) = cn.
(ii) res(f1, f1) = 0.

(iii) res(f1, f2) = (−1)nmres(f2, f1).
(iv) res(cf1, f2) = cnres(f1, f2).
(v) If deg(φ(f1)) = m and deg(φ(f2)) = k where 0 ≤ k ≤ n, then φ(res(f1, f2)) =

(φ(am))n−kres(φ(f1), φ(f2)).
(vi) If deg(φ(f1)) = m and deg(φ(f2)) = n then φ(res(f1, f2)) = res(φ(f1), φ(f2)).

Theorem 2. Let f1, f2 ∈ R[x] and suppose g = gcd(f1, f2) exists. Then deg(g, x) >
0 if and only if res(f1, f2) = 0.

Proof. Corollary ( Sylvester’s Criterion) chapter 7 [7].

2.3 Computing Resultants of Univariate Polynomials

Let f1, f2 ∈ R[x]. In this section, we describe how res(f1, f2) ∈ R can be com-
puted using the Monic Euclidean Algorithm.

Definition 3. Let f ∈ R[x]. If f = 0, we define monic(f) = 0. Otherwise, we
define monic(f) = lc(f)−1f , where lc(f) is the leading coefficient of f . If lc(f) is
not unit in R, then monic(f) = “failed”. We say f is monic if f = monic(f).

Our modular resultant algorithm attempts to compute the resultant of two uni-
variate polynomials over L̄p, a finite ring. In L̄p, elements are either zero, units, or
zero-divisors. Thus, monic(f) = “failed” means that the algorithm encountered
a zero-divisor. Let f1, f2 ∈ R[x] such that 0 ≤ deg(f2) ≤ deg(f1). Algorithm 2,
the Monic Euclidean Algorithm takes f1 and f2 as its inputs and returns either
a message “FAIL” or the monic gcd of f1 and f2.

Definition 4. Given f1, f2 ∈ R[x] with deg(f2) ≤ deg(f1), assume that the
Monic Euclidean Algorithm (MEA) does not fail for f1 and f2 and terminates af-
ter l iterations. We define the Monic Polynomial Remainder Sequence, m.p.r.s.,
generated by polynomials f1 and f2 as the sequence r1, r2, . . . , rl, rl+1 obtained
from the execution of the Monic Euclidean Algorithm such that r1 = f1, r2 = f2,
r3 = r1−M2q3, and ri+2 = Mi−Mi+1qi+1 with Mi = monic(ri) and deg(ri+1) <
deg(ri) for 2 ≤ i ≤ l − 1 and rl+1 = 0.
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Algorithm 2: Monic Euclidean Algorithm

Require: f1, f2 ∈ R[x] such that 0 ≤ deg(f2) ≤ deg(f1) and R is a commutative ring
with identity 1 6= 0.

Ensure: Either the monic gcd(f1, f2) or FAIL.
1: r1, r2 = f1, f2
2: M1, i = r1, 2
3: while ri 6= 0 do
4: Mi = monic(ri)
5: if Mi = failed then return(FAIL) // The algorithm encountered a

zero-divisor.

6: Set ri+1 to be the remainder of Mi−1 divided by Mi

7: Set i = i+ 1
8: end while
9: l = i− 1

10: return(Ml)

Remark 1. The remainders appearing in m.p.r.s. are not monic polynomials. We
call them Monic Polynomial Remainder Sequence since they are obtained from
the MEA.

Theorem 3. Let f1, f2 ∈ R[x] such that lc(f2) is a unit and f1 = f2q+ r where
r, q ∈ R[x] and deg(r) < deg(f2) or r = 0. Let n1 = deg(f1), n2 = deg(f2), and
nr = deg(r). Then

res(f2, f1) = lc(f2)n1−nrres(f2, r)

Proof. [5], section 3.5, exercise 16 part b.

Theorem 4. (m.p.r.s.)
Suppose that f1, f2 ∈ L̄p[x] and the Monic Euclidean Algorithm does not fail for
f1 and f2. Let r1, r2, . . . , rl, rl+1 be the m.p.r.s. generated by f1 and f2 where
rl+1 = 0. Let ni = deg(ri) for 1 ≤ i ≤ l. If deg(rl) > 0, then res(f1, f2) = 0.
Otherwise, we have

res(f1, f2) = (−1)v(

l−1∏
i=2

lc(ri)
ni−1)lc(rl)

nl−1

where v =
∑l−2
i=1 nini+1.

Proof. If deg(rl) 6= 0, then the monic gcd(f1, f2) 6= 1. Applying Theorem 2, we
have res(f1, f2) = 0. On the other hand, in the first step of Algorithm 2, we
have M1 = M2q3 + r3 where M1 = f1, M2 = monic(f2) and deg(r3) < deg(M2).
According to Theorem 3, since lc(M2) = 1, we have res(M2,M1) = res(M2, r3).
We have,

res(M2,M1) = res(lc(f2)−1f2, f1)

= (lc(f2)−1)n1res(f2, f1)

= (−1)n1n2(lc(f2)−1)n1res(f1, f2)



8 Mahsa Ansari and Michael Monagan

Thus, res(M2, r3) = (−1)n1n2(lc(f2)−1)n1res(f1, f2). Continuing this process, in
the i-th step of the MEA, where Mi = Mi+1qi+2 + ri+2, we have res(Mi, ri+1) =

(−1)v(
∏i
j=2(lc(rj)

−1)nj−1)res(f1, f2) where v =
∑i
j=2 nj−1nj . Moreover, in the

last step of the MEA, since rl = c ∈ L̄p, we have res(Ml−1, rl) = r
nl−1

l =
lc(rl)

nl−1 which implies the result.

Applying Theorem 4, we can modify the MEA to compute the resultant of two
univariate polynomials f1, f2 ∈ R[x] in Algorithm 3. This algorithm is used in
the base case of Algorithm 4, line 1.

Algorithm 3: URES

Require: f1, f2 ∈ R[x] such that 0 ≤ deg(f2) ≤ deg(f1) where R is a commutative
ring with identity 1 6= 0.

Ensure: Either res(f1, f2) or FAIL.
1: r1 = f1, r2 = f2, i = 2
2: M1 = r1, R = 1, v = 0
3: n1 = deg(f1) ,n2 = deg(f2)
4: while ri 6= 0 do
5: Mi = monic(ri)
6: if Mi = failed return (FAIL)// The algorithm encounters a

zero-divisor.

7: Set ri+1 to be the remainder of Mi−1 divided by Mi

8: Set ni+1 = deg(ri+1)
9: if ni+1 < 0 and ni 6= 0 then return(0) // If gcd(f1, f2) is not a

constant, then res(f1, f2) = 0
10: Set R = R · lc(ri)

ni−1

11: Set v = v + nini−1

12: Set i = i+ 1
13: end while
14: R = (−1)vR
15: return(R)

Example 6. Let f1, f2L̄3[x] where L̄3 = Z3[z]/〈z2 − 2〉[x]. On input of f1 =
x3 + (2z)x + 1 and f2 = 2x2 + xz Algorithm 3 returns R = z + 1 the resultant
of f1 and f2. Table 1 shows the intermediate values.

Table 1. Example 6

Dividend Divisor Remainder R

M1 M2 = monic(f2) = x2 + 2xz r3 = (2z + 2)x+ 1 R = 2
M2 M3 = monic(r3) = x+ 2z + 1 r4 = 2z + 1 R = z
M3 M4 = monic(r4) = 1 r5 = 0 R = z + 1
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3 The Modular Resultant Algorithm

Let f1, f2 ∈ L[x1, . . . , xk, y]. In this section, we present a modular algorithm to
compute r = res(f1, f2, y). We can present f1 =

∑m
i=0 aiy

i ∈ L[x1, . . . , xk][y]
and f2 =

∑n
i=0 biy

i ∈ L[x1, . . . , xk][y], where deg(f1, y) = m, deg(f2, y) = n,
and ai, bi ∈ L[x1, . . . , xk]. In general, modular algorithms use two fundamental
homomorphisms, the modular and evaluation homomorphisms. The modular
homomorphism, φp : Z −→ Zp, maps integers into their remainders modulo p.
We choose p to be a prime so Zp is a finite field. This homomorphism is used
to prevent the growth of integer coefficients of algebraic numbers in MEA. Let
R = L̄p[xk] and R′ = L̄p. We define the evaluation homomorphism φxk=β :
R[x1, . . . , xk−1, y] −→ R′[x1, . . . , xk−1, y] such that φxk=β(f) = f(β).

Our modular resultant algorithm, MRES, first computes the resultant mod-
ulo a sequence of primes. For each prime, MRES calls PRES which uses the
evaluation homomorphism and interpolation to calculate the resultant of f1 and
f2 over L̄p. Subsequently, MRES employs CRT and RNR to reconstruct the
rational coefficients of the resultant. However, the successful reconstruction of
the resultant is not guaranteed for all primes and evaluation points. In Sec-
tion 3.1 and Section 3.2 we identify problematic evaluation points and primes,
respectively.

3.1 Algorithm PRES

Let p be a large prime. To compute res(f1, f2, y) for f1, f2 ∈ L̄p[x1, . . . , xk][y],
Algorithm PRES, Algorithm 4, uses evaluation and dense interpolation as in
[2]. PRES is recursive. If f1, f2 ∈ L̄p[y], PRES computes res(f1, f2) ∈ L̄p using
Theorem 4. Otherwise, PRES chooses β ∈ Zp randomly and in Step 9 reduces
f1 and f2 to polynomials in L̄p[x1, . . . , xk−1][y] by evaluating them at xk = β.
To apply Theorem 1 (vi) we need that the leading coefficients of f1 and f2 do
not vanish at xk = β. Subsequently, Algorithm PRES recursively computes

Rβ = res(f1(x1, . . . , xk−1, β, y), f2(x1, . . . , xk−1, β, y)) ∈ L̄p[x1, x2, . . . , xk−1].

Next, Algorithm PRES interpolates xk in res(f1, f2, y). Let m = deg(f1, y),
n = deg(f2, y), d1 = deg(f1, xk) and d2 = deg(f2, xk). From Sylvester’s matrix
we have deg(res(f1, f2, xk) ≤ nd1 + md2 thus we need at most nd1 + md2 + 1
evaluation points.

We emphasize that not all choices for β lead to a successful computation of
the resultant mod p. Definition 5 classifies the problematic evaluation points.

Definition 5. Let f1, f2 ∈ L̄p[x1, . . . , xk, y]. Assume that res(f1, f2, y) exists.
Let β ∈ Zkp and let xk = βk, xk−1 = βk−1, . . . , x1 = β1 be an evaluation point.
We identify three types of evaluation points as follows:

– Lc-bad Evaluation Points: Let f1, f2 ∈ L̄p[x1, . . . , xk][y]. We call β an
lc-bad evaluation point if lc(f1)(β) = 0 or lc(f2)(β) = 0.



10 Mahsa Ansari and Michael Monagan

Algorithm 4: PRES

Require: f1, f2 ∈ L̄p[x1, . . . , xk][y]
Ensure: res(f1, f2, y) ∈ L̄p[x1, . . . , xk] or FAIL
1: if k = 0 return( URES(f1, f2) ) // f1, f2 ∈ L̄p[y]
2: (m,n) = deg(f1, y),deg(f2, y)
3: B = ndeg(f1, xk) +mdeg(f2, xk)
4: for j = 0 to B do
5: Pick a new evaluation point β at random from Zp such that β is not lc-bad
6: F1β = f1(xk = β) and F2β = f2(xk = β)
7: Rβ = PRES(F1β , F2β , y)
8: if Rβ = FAIL then return(FAIL) end if
9: if j = 0 then

10: (R, prod) = (Rβ , (x− β)) // First iteration

11: else
12: // Interpolate xk in the resultant, R, incrementally
13: Vβ = prod(xk = β)−1 · (Rβ −R(xk = β))
14: R = R+ Vβ · prod
15: prod = prod · (xk − β)
16: end if
17: end for
18: return(R)

– Zero-Divisor Evaluation Points: If β is not lc-bad we call β a zero-
divisor evaluation point if Algorithm 3 when called by Algorithm PRES in
step 3 tries to invert a zero-divisor in L̄p.

– Good Evaluation Points: If β is neither lc-bad nor a zero-divisor evalu-
ation point call β a good evaluation point.

Example 7. Let f1 = (x+ 1)y3 + xz and f2 = (x+ z)y+ zx be two polynomials
in L̄7[x][y] where L̄7 = Z7[z]/〈z2〉. The evaluation point x = 6 is an lc-bad
evaluation point since lc(f1)(6) = 0 mod 7. If we choose x = 0, then f1(0, y) =
y3 and f2(0, y) = yz. Since lc(f2)(0) = z is not invertible over L̄7, Algorithm 3
fails to compute the resultant of f1(0, y) and f2(0, y) which implies that x = 0
is a zero-divisor evaluation point.

3.2 Algorithm MRES

Algorithm MRES, presented as Algorithm 5, computes the resultant of two poly-
nomials f1, f2 ∈ L[x1, . . . , xk, y]. MRES first replaces f1, f2 with their semi-
associates. After applying φp to map the coefficients in L to Lp, MRES uses
φγ to convert the polynomials over Lp to their corresponding polynomials over
L̄p. Subsequently, MRES calls PRES to compute res(f1, f2, y) ∈ L̄p[x1, . . . , xk].
Let Rp be the output of PRES. If Rp = FAIL then when PRES called URES
in Step 2, a zero divisor was encountered. MRES chooses a new prime. In step
12, MRES converts Rp ∈ L̄p[x1, . . . , xk] to its corresponding polynomial over
Lp. Employing, CRT and RNR, MRES algorithm tries to reconstruct rational
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coefficients of Rp. If RNR does not fail and the current result of RNR, denoted
by H, is equal to the previous result of RNR, then MRES returns H as the
res(f1, f2, y). Therefore MRES is a Monte Carlo algorithm. It can output an
incorrect answer with low probability.

Algorithm 5: MRES

Require: f, g ∈ L[x1, . . . , xk, y] and P a large set of primes.
Ensure: res(f, g, y) ∈ L[x1, . . . , xk].
1: presult = 0
2: M = 1
3: f, g = f̌ , ǧ // Clear fractions

4: while true do
5: Choose a new prime p from P at random that is not lc-bad.
6: Choose C1, . . . , Cn−1 from [1, p) at random and set γ = z1 +

∑n
i=2 Ci−1zi

7: Call Algorithm 1 with inputs [φp(M̌1), . . . , φp(M̌n)], Zp and φp(γ) to compute
M(z), A, and A−1 // check if p is a det-bad prime

8: if Algorithm 1 returns FAIL then Go back to step 5 end if
9: Rp = PRES(φγ(φp(f̌1)), φγ(φp(f̌2)), y) ∈ L̄p[x1, . . . , xk]

10: if Rp= FAIL then Go back to step 5. end if // a zero divisor was

encountered in URES

11: Rp = φ−1
γ (Rp) // Convert Rp over L̄p to its corresponding polynomial

over Lp
12: if M = 1 then
13: R,M := Rp, p; // First iteration

14: else
15: Using the CRT, compute R′ ≡ R mod M and R′ ≡ Rp mod p
16: Set R = R′ and M = M · p
17: end if
18: H := Rational Number Reconstruction of R mod M
19: if H 6= FAIL then if H = presult return(H) else presult = H end if
20: end while

As mentioned before, not all the primes result in a successful reconstruction
of the resultant. Definition 6 distinguishes four types of primes.

Definition 6. Let f1, f2 ∈ L[x1, . . . , xk][y] and p be a prime.

– Lc-bad Primes: If p divides either lc(f̌1), lc(f̌2), or any lc(M̌i(zi)) for
1 ≤ i ≤ n, we call p an lc-bad prime.

– Det-bad Primes: Let A be the matrix obtained from Algorithm 1 over F =
Zp. If det(A) = 0, then p is called a det-bad prime.

– Zero-Divisor Primes: If p is neither an lc-bad nor a det-bad prime and
there exists ri among the m.p.r.s., Definition 4, such that lc(ri) is not in-
vertible over L̄p, then p is called a zero-divisor prime. In other words, p is a
zero-divisor prime if Algorithm 3 fails for p.

– Good Primes: If p is neither lc-bad, det-bad, nor a zero-divisor prime, we
define it as a good prime.
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Example 8. Let f1 = 23z2x+ z1y and f2 = (z2 + 5)x+ z1y be two polynomials
listed in the lexicographic order with x > y over L[x, y] where L = Q[z1, z2]/〈z2

1−
2, z2

2 − 3〉. Then, p = 23 is an lc-bad prime since lc(f1) = 0 mod p. Moreover,
p = 11 is a zero-divisor prime because lc(f2) = z2 + 5 is not invertible over
Z11[z1, z2]/〈z2

1 − 2, z2
2 − 3〉 as z2

2 − 3 mod 11 = (z2 + 5)(z2 + 6).

4 Implementation and Benchmarks

We have implemented algorithm MRES and its subalgorithms in Maple [9].
We use the recursive dense data structure from [11] to represent elements of
L = Q(α1, . . . , αn) and polynomials in L[x1, . . . , xk]. For the set of primes P we
use 31 bit primes.

We present two timing benchmarks. All timings were obtained on Intel Core
i7-6700. In both Table 2 and Table 3, column N denotes the number of primes
needed by MRES, and column MRES 1 is the time for our algorithm, MRES,
using φγ and computing over L̄p. Column MRES 2 is the time for MRES if
we do not use φγ and compute over Lp. Column LAMP is the time spent in
Algorithm 1. For both algorithms, column PRES is the time spent in Algorithm
4. The speedup achieved by employing φγ can be observed by comparing columns
PRES for MRES 1 and MRES 2.

The first benchmark, Table 2, presents timings of the resultant computa-
tions in L[x, y] where the number field L = Q(

√
2,
√

3,
√

5,
√

7) has degree 16.
In Table 2, the input polynomials f1 and f2 have degree m in x and y and
res(f1, f2, x) has degree ry in y. The coefficients of the input polynomials, f1

and f2, are polynomials in z1, z2, z3, and z4 with coefficients chosen randomly
from [1, 9).

Table 2. Timings in CPU seconds for computing res(f1, f2, x), the resultant
of f1 and f2 of degree m in L[x, y].

m ry N MRES 1 MRES 2

time LAMP PRES time PRES

2 4 4 0.313 0.126 0.140 0.828 0.828
4 16 4 0.828 0.187 0.501 8.609 8.563
6 36 7 3.938 0.189 3.218 59.938 59.610
8 64 11 14.171 0.218 11.891 291.281 289.875

10 100 16 47.500 0.468 48.842 967.437 962.609
12 144 22 119.766 0.596 103.016 > 1000 > 1000
14 196 29 282.844 0.798 244.189 > 1000 > 1000

The second benchmark, Table 3, shows timings for computing the resultant of
two polynomials f1 and f2 in L[x, y], where L = Q(α1, α2, α3). Let M1 = z2

1 −2,

M2 = z2
2−3, and M3 =

∑d3

j=0 z
j
3+z1z2 be the minimal polynomials of α1, α2, and

α3, respectively. Thus, L is an algebraic number field of degree d = 2×2×d3. To
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consider various degrees for L, we change d3. In Table 3, the input polynomials
f1 and f2 have degree 16 in x and y and L has degree d. The Maple codes and
benchmarks are available at http://www.cecm.sfu.ca/~mmonagan/code/MRES.

Table 3. Timings in CPU seconds for computing res(f1, f2, x) over an alge-
braic number field Q(

√
2,
√

3, α3) of degree d.

d N MRES 1 MRES 2

time LAMP PRES time PRES

16 5 43.688 0.095 42.562 288.265 287.811
24 5 55.203 0.156 53.688 379.735 379.077
32 5 57.234 0.249 55.517 513.797 513.078
40 5 67.719 0.375 65.641 628.547 627.361
48 5 80.687 0.624 78.094 745.578 744.703
56 5 100.953 0.922 97.031 894.734 893.921
64 5 114.062 1.375 110.171 > 1000 > 1000

5 Complexity

Let f1, f2 ∈ L̄p[x1, x2, ..., xk, y] and r = res(f1, f2, y) ∈ Lp[x1, x2, ..., xk]. Let
d be the degree of the number field L. Let #f denote the number of terms
of f in the variables x1, x2, ..., xk, y. Let Tf = #f1 + #f2 and Tr = #r. So
Tf is the number of terms in the input and Tr is the number of terms in the
output r. Let m = deg(f1, y), n = deg(f2, y), dx = maxi,j deg(fi, xj) and D =
(m + n)dx. We have Tf ≤ (m + n + 2)(dx + 1)k and Tr ≤ (D + 1)k. Since
our implementation currently uses classical quadratic polynomial arithmetic, we
assume that multiplication and inverses in L̄p cost O(d2).

Definition 7. Given f ∈ LZ[x1, . . . , xk, y], we can represent f =
∑
α CαX

α as

a polynomial over Z[z1, . . . , zn, x1, . . . , xk] where Xα =
∏n
i=1 z

αi
i

∏k
j=1 x

βj

j such
that αi, βj ∈ Z. If we use this representation, we denote the height of f by ‖f‖∞
and define it as

H(f) = ‖f‖∞ = max
α

(| Cα |).

Theorem 5. Algorithm PRES does

O(TfdD
k +mnd2Dk + kdDk+1) = O(dDk(Tf +mnd+ kD)

arithmetic operations in Zp.

Proof. The following costs count the arithmetic operations in Zp. The dominat-
ing steps of PRES are the evaluations at xk = β in Step 6, the cost of the MEA
in Step 1, and the interpolation cost in Steps 13–15. To interpolate x1, . . . , xk
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in r we need to bound deg(r, xi). From Sylvesters matrix for f1(y) and f2(y) we
have

deg(r, xi) ≤ m deg(f2, xi) + ndeg(f1, xi) ≤ (n+m)dx = D.

Thus, to interpolate x1, . . . , xk in r we need (D + 1)k values using dense inter-
polation.

We have to evaluate the input polynomials f1 and f2 at xk = β for β ∈ Zp
in line 9 of PRES for D + 1 choices of β. To speed this up, we precompute the
powers βi for 0 ≤ i ≤ dx which has a negligible cost. The evaluation cost is
dominated by evaluating at x1 = β which costs O(Tfd) multiplications. This
is done for D + 1 choices of β and for (D + 1)k−1 calls to PRES. The total
evaluation cost is O(TfdD

k).
Algorithm PRES makes (D + 1)k calls to URES in Step 1. URES calls the

MEA which does O(mn) arithmetic operations in L̄p each of which costs O(d2)
thus URES costs O(mnd2Dk) in total.

Algorithm PRES is called once to interpolate xk from D + 1 values of
r(z, x1, . . . , xk−1, xk = β). It does at most d(D + 1)k−1 univariate interpola-
tions in xk each of which costs O(D2) for a total cost of O(dDk+1). In general
Algorithm PRES is called (D+1)k−i times to interpolate xi from D+1 values of
r(z, x1, . . . , xi−1, xi = β). It does at most d(D + 1)i−1 univariate interpolations
in xi, each of which costs O(D2), which in total costs O(dDk+1). Thus the total
interpolation cost is O(kDk+1d).

Adding the three costs gives the result.

Let N be the number of good primes needed to reconstruct the resultant r. Let
M = log maxni=1H(m̌i) and C = log max(H(f̌1), H(f̌2)).

Theorem 6. Algorithm MRES costs

O(N(M + CTM )d+Nd3 +Nd2Tf +Nd2Tr +NdDk(Tf +mnd+ kD) +N2dTr) =

O(Nd(M + CTM + d2 + d(Tf + Tr) +Dk(Tf +mnd+ kD) +NTr))

arithmetic operations.

Proof. Algorithm MRES reduces the minimal polynomials M̌1, . . . , M̌n and the
input polynomials f̌1 and f̌2 mod N primes which costs O(N(M + CTM )d).

The time complexity of building the matrix A in Algorithm 1 for N primes is
O(Nd3). The running time complexity of applying φγ to the Tf non-zero terms
of f1 and f2 for N primes is O(Nd2Tf ). Let Rp be the output of Algorithm
PRES in Step 9 of MRES, then the time complexity of calling φ−1

γ for Rp in
Step 11 for N primes is O(Nd2Tr).

According to Theorem 5, calling PRES in Step 9 of MRES costs O(dDk(Tf +
mnd+ kD).

Finally, Algorithm MRES reconstructs O(dTr) rational coefficients in Step 15
and 18 which costs O(N2) each hence O(N2dTr) in total. The theorem follows
by adding the costs explained above.
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6 Failure Probability

In this section, we compute the probability of encountering problematic primes
and evaluation points. Let P31 = {all 31 bit primes}, that is, primes in (230, 231),
and let Np =| P31 |= 50, 697, 537 denote the cardinality of P31.

6.1 Lc-bad Primes and Evaluation Points

Theorem 7. Let f1, f2 ∈ L[x1, . . . , xk, y]. Let H = max(‖lc(f̌1)‖)∞, ‖lc(f̌2)‖)∞) <
2h, and lc(M̌i) < 2m for 1 ≤ i ≤ n. If p is chosen at random from P31 then

Prob[p is an lc-bad prime] ≤ 2b h
30 c+nb

m
30 c

Np
.

Proof. Let A denote the event that p | lc(f̌1), B denote the event that p | lc(f̌2),
and C denote the event that p | lc(M̌i) for some 1 ≤ i ≤ n. Then

Prob[p is an lc-bad prime] = Prob[A ∨B ∨ C] ≤ Prob[A] + Prob[B] + Prob[C]

To compute Prob[A], we first notice that lc(f̌1) =
∑N
i=1 aαiZ

αi ∈ LZ where the
sum is over a finite number of n−tuples αi = (αi1 , . . . , αin) ∈ Zn≥0 such that

Zαi = z
αi1
1 · · · zαin

n . Since lc(f̌1) 6= 0 there is at least one j with aαj
6= 0. Thus,

Prob[A] = Prob[lc(f̌1) = 0 mod p]

= Prob[p | aα1
∧ p | aα2

∧ . . . ∧ p | aαN
]

≤ Prob[p | aαj
].

≤
b h30c
Np

.

Similarly, we have Prob[B] ≤ b
h
30 c
Np

. For C we have

Prob[C] = Prob[p | lc(M̌1) ∨ . . . ∨ p | lc(M̌n)]

≤
n∑
i=1

Prob[p | lc(M̌i)]

≤ n
bm30c
Np

.

Adding the three probabilities implies the theorem.

To compute the probability of encountering an lc-bad evaluation point, we
represent f̌1 ∈ L̄p[x1, . . . , xk, y] as a non-zero polynomial over Zp[z][x1, . . . , xk][y]
so lc(f̌1) ∈ Zp[z][x1, . . . , xk]. Thus β ∈ Zk is an lc-bad evaluation point if
lc(f̌1)(β) vanishes.

Theorem 8. Let β ∈ Zk be chosen at random, then

Prob[β is an lc-bad evaluation point] ≤ deg(f̌1)

p
.
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Proof. Let lc(f̌1) =
∑d−1
i=0 ai(x1, . . . , xk)zi 6= 0. Thus, there exists 0 ≤ j ≤ d− 1

such that aj(x1, . . . , xk) 6= 0. We have,

Prob[lc(f̌1)(β) = 0] ≤ Prob[aj(β) = 0]

≤ deg(aj)

p
≤ deg(f̌1)

p

6.2 Det-bad Primes

We recall Hadamard’s bound for the determinant of an integer matrix.

Theorem 9. Let A be an n× n matrix with Ai,j ∈ Z. Then

| det(A) |≤
∏n
i=1

√∑n
j=1A

2
i,j .

Let γ = z1 + C1z2 + · · · + Cn−1zn where 0 6= Ci ∈ Z for 1 ≤ i ≤ n− 1.
Recall that p is a det-bad prime if det(A) mod p = 0 where A is the coefficient
matrix of powers of γ. We consider the case where m̌i ∈ Z[z1, . . . , zi] are monic
for 1 ≤ i ≤ n so A ∈ Zd×d. To compute the probability that p is a det-bad
prime, we must first compute an upper bound for | det(A) |. If we get an upper
bound for the entries of A, we can use Hadamard’s bound, Theorem 9, to get an
upper bound for the | det(A) |. To do so, we first compute γi for 1 ≤ i ≤ d− 1
over F = Z. In this case, the largest entry of matrix A will appear in its last
column, [γd−1]BL

. Thus we need an upper bound for the height of the remainder
of γd−1 divided by m̌n, . . . , m̌1. However, before dividing by the monic minimal
polynomials, we have ‖γd−1‖∞ < ‖γd‖∞. Accordingly, if we compute a bound
for the remainder of γd divided by m̌n, . . . , m̌1, we can use it as an upper bound
for Ai,j . Notice that deg(γj , zi) = j for 1 ≤ i ≤ n. Recall that di = deg(m̌i, zi),
and d =

∏n
i=1 di is the degree of our algebraic number field.

Lemma 2. Let f, g ∈ Z[z1, . . . , zn] and m̌i = zdii +
∑di−1
j=0 ajz

j
i where aj ∈

Z[z1, . . . , zi−1]. we have,

(i) ‖fg‖∞ ≤ ‖f‖∞‖g‖∞min(Tf , Tg).

(ii) deg(aj , zk) ≤ dk − 1 for 1 ≤ k ≤ i− 1 and Taj ≤
∏i−1
k=1 dk < d.

In [3], Chen and Monagan introduced an upper bound for the remainder of
division by a univariate monic polynomial. Using the same strategy, we prove
Theorem 10.

Theorem 10. Let f ∈ Z[z1, . . . , zn] and d = deg(f, zi) > 0 where d =
∏n
i=1 di.

Let r be the remainder of f divided by m̌n and δ = d− dn + 1 be the maximum
number of division steps. Then,

(i) deg(r, zn) ≤ dn − 1 and deg(r, zi) ≤ d+ δ(di − 1), for 1 ≤ i ≤ n− 1.
(ii) ‖r‖∞ ≤‖f‖∞(1 + d/dn‖m̌n‖∞)δ.

Proof. Let f =
∑d
i=0 fiz

i
n and m̌n = zdnn +

∑dn−1
j=0 ajz

j
n such that fi, aj ∈

Z[z1, . . . , zn−1] for 1 ≤ i ≤ d and 0 ≤ j ≤ dn − 1.
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(i) The quotient of f divided by m̌n has degree d−dn so the division of f by m̌n

has up to δ = d−dn+1 steps. In the first step, we have r1 = f−fdzd−dnn m̌n.
Thus deg(r1, zn) ≤ d− 1. Moreover, for 1 ≤ i ≤ n− 1, we have deg(fd, zi) ≤
deg(f, zi) = d and deg(m̌n, zi) ≤ di − 1. Consequently,

deg(r1, zi) = max{deg(f, zi),deg(fd, zi) + deg(m̌n, zi)}
≤ deg(f, zi) + deg(m̌n, zi)

≤ d+ di − 1.

If deg(r1, zn) ≥ dn, we continue the division. Let b1 = lc(r1, zn) and deg(r1, zn) =
d − 1. In the second division step, we have r2 = r1 − b1zd−dn−1

n m̌n. Hence,
deg(r2, zn) ≤ deg(r1, zn)− 1 ≤ d− 2 and

deg(r2, zi) ≤ deg(r1, zi) + deg(m̌n, zi)

≤ d+ 2(di − 1).

Since the division algorithm has at most δ steps, in the last step, we have
deg(r, zn) ≤ d− δ = dn − 1 and

deg(r, zi) ≤ d+ δ(di − 1).

(ii) In the first step of the division, we have r1 = f − fdzd−dnm̌n. Thus ‖r1‖∞≤
‖f‖∞+‖fdm̌n‖∞. To compute a bound for ‖fdm̌n‖∞, it is sufficient to get
a bound for ‖fdaj‖∞ where aj ∈ Z[z1, . . . , zn−1]. Using Lemma 2, we have
Taj < d/dn and

‖fdaj‖∞ ≤‖fd‖∞‖m̌n‖∞min(Taj , Tfd) ≤ d/dn‖fd‖∞‖m̌n‖∞
for 1 ≤ j ≤ dn − 1. Thus,

‖r1‖∞≤‖f‖∞+‖fdm̌n‖∞ ≤‖f‖∞+‖f‖∞‖m̌n‖∞d/dn ≤‖f‖∞(1+d/dn‖m̌n‖∞).

Furthermore, deg(r1, zn) ≤ d− 1. If deg(r1, zn) ≥ dn, in the second division
step, we have r2 = r1 − b1zd−dn−1

n m̌n where b1 = lc(r1, zn). Since ‖b1‖∞≤
‖r1‖∞, using the same strategy as the first step, we have

‖r2‖∞ ≤‖r1‖∞+‖b1m̌n‖∞ ≤‖r1‖∞+d/dn‖r1‖∞‖m̌n‖∞
≤‖r1‖∞(1 + d/dn‖m̌n‖∞) ≤‖f‖∞(1 + d/dn‖m̌n‖∞)2.

Continuing this argument, the result is obtained.

Theorem 11. Let f ∈ Z[z1, . . . , zn] and m̌i ∈ Z[z1, . . . , zi] for 1 ≤ i ≤ n be
monic minimal polynomials. Suppose that deg(f, zi) ≤ d where d =

∏n
i=1 di. Let

r be the remainder of f divided by m̌n, . . . , m̌1. Then

‖r‖∞ ≤‖f‖∞
n∏
i=1

(1 +Di‖m̌n−i+1‖∞)δi

where Di = d∏i
j=1 dn−j+1

, δ1 = d− dn + 1, and δi = d− dn−i+1 + 1 + (dn−i+1 −

1)
∑i−1
j=1 δj for 2 ≤ i ≤ n.
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Proof. Let r1 be the remainder of f divided by m̌n w.r.t. zn and δ1 = d−dn + 1
be the maximum number of division steps. From Theorem 10, we have

‖r1‖∞ ≤‖f‖∞(1 +
d

dn
‖m̌n‖∞)δ1 .

Now, let r2 be the remainder of r1 divided by m̌n−1 w.r.t. zn−1. From part (i)
of Theorem 10, we have deg(r1, zn−1) ≤ d+ δ1(dn−1 − 1), thus

deg(r1, zn−1)− dn−1 + 1 ≤ d+ δ1(dn−1 − 1)− dn−1 + 1

and δ2 = d + δ1(dn−1 − 1) − dn−1 + 1 is the maximum number of division

steps. Let m̌n−1 = z
dn−1

n−1 +
∑dn−1−1
j=0 bjz

j
n−1 such that bj ∈ Z[z1, . . . , zn−2] for

0 ≤ j ≤ dn−1 − 1. Thus Tbj ≤ d
dndn−1

. Using the same strategy as the proof of

part (ii) of Theorem 10, we have

‖r2‖∞ ≤‖r1‖∞(1 +
d

dndn−1
)‖m̌n−1‖∞)δ2

≤‖f‖∞(1 +
d

dn
‖m̌n‖∞)δ1(1 +

d

dndn−1
‖m̌n−1‖∞)δ2 .

The result is obtained by repeating this process for all n minimal polynomials.

Using Theorem 11, we are well-equipped to compute a bound for the entries of
A i.e. Ai,j .

Corollary 1. Let γ = z1 + C1z2 + · · · + Cn−1zn where 0 6= Ci ∈ Z for 1 ≤
i ≤ n− 1 and ‖γd‖∞ ≤ 2C . Let r be the remainder of γd divided by the monic
minimal polynomials m̌n, . . . , m̌1. Let A be the coefficient matrix obtained from
Algorithm 1. Let Di and δi be as in Theorem 11. Then,

Ai,j ≤ ‖r‖∞ ≤ 2C
n∏
i=1

(1 +Di‖m̌n−i+1‖∞)δi .

Proof. This is a consequence of Theorem 11.

We have determined that δn ≤ d2/dn by computational experiment but we can
only prove this for d1 = d2 = · · · = dn. Thus Corollary 1 implies log‖r‖∞ is
polynomial in d,C and ‖m̌i‖∞.

Suppose Algorithm MRES chooses p at random from P31. Theorem 12 bounds
the probability that p is a det-bad prime, that is p|det(A).

Theorem 12. Let γ = z1 + C1z2 + · · ·+ Cn−1zn where 0 6= Ci ∈ Z for 1 ≤ i ≤
n−1 and ‖γd‖∞ ≤ 2C . Let Di and δi be as in Theorem 11. Suppose det(A) 6= 0.
If p is chosen at random from P31 then

Prob[p|det(A)] ≤
b(d/2 log2 d+ d(C +

∑n
i=1 δi log2(1 +Di‖m̌n−i+1‖∞)))c

30Np
.
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Proof. To compute the probability that p|det(A) we first bound |det(A)|. Using
Theorem 9 and Corollary 1,

| det(A) |≤
d∏
i=1

√√√√ d∑
j=1

A2
j,i ≤ d

d/2(2C
n∏
i=1

(1 +Di‖m̌n−i+1‖∞)δi)d.

Since p ∈ P31 implies p > 230,

Prob[p|det(A)] ≤ blog2(| det(A) |)/ log2 230c
Np

≤
b(d/2 log2 d+ dC + d

∑n
i=1 δi log2(1 +Di‖m̌n−i+1‖∞))c

30Np
.

Now we can get a bound for ‖M(z)‖∞ where M(z) is the characteristic polyno-
mial obtained from Algorithm 1.

Theorem 13. Let M(z) be the characteristic polynomial obtained from Algo-
rithm 1. We have,

‖M(z)‖∞≤ dd/2(2C
n∏
i=1

(1 +Di‖m̌n−i+1‖∞)δi)d.

Proof. To construct the characteristic polynomial, M(z), we can solve the linear

system Aq = −[γd]BL
for q ∈ Qd. Using the Cramer’s rule, qk = det(A(k))

det(A) where

A(k) is the matrix formed by replacing the k-th column of A by [γd]BL
for

1 ≤ k ≤ d. Thus, the largest entries of A(k) appear in the k-th column. Now,
using Theorem 9, we have

| det(A(k)) |≤
d∏
i=1

√√√√ d∑
j=1

A
(k)
j,i

2
≤ dd/2(2C

n∏
i=1

(1 +Di‖m̌n−i+1‖∞)δi)d.

Since m̌i ∈ Z[z1, . . . , zi], we haveM(z) ∈ Z which implies that det(A) | det(A(k)).
Thus, qk ∈ Z and qk ≤| det(A(k)) |≤ dd/2(2C

∏n
i=1(1 +Di‖m̌n−i+1‖∞)δi)d.

We still must compute the failure probability of hitting a zero-divisor prime
and evaluation point.

7 Conclusion

We have contributed a new modular algorithm to compute the resultant of two
polynomials in Q(α1, . . . , αn)[x1, . . . , xk]. Our algorithm has been implemented
in Maple, and its efficacy has been demonstrated through the presentation of two
benchmarks. Furthermore, we gave a complexity analysis with failure probabili-
ties. Nevertheless, there remains the task of computing the failure probabilities
associated with encountering zero-divisor primes and evaluation points.
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