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Abstract

We compare four fast methods for univariate polynomial
GCD computation over an algebraic number field. The
first two are the modular method of Langemyr and
McCallum (1987), and the heuristic method of Smedley
et al. (1988). Because of recent improvements to the
modular method by Encarnacion (1994), we expected
it now to always be the better of the two in practice,
provided it is implemented “properly”. This turned
out to be the case in our Maple implementations.
We also implemented a quadratic lifting Hensel based
method and a more direct method which we call the
prime-power method. Like the heuristic and quadratic
Hensel methods, the prime-power method is simple to
implement efficiently, but it is usually better. Due to the
large effort required to implement the modular method
efficiently, we recommend the prime-power method as a
practical alternative.

1 Introduction

For 10 years the algorithm Maple used to compute poly-
nomial greatest common divisors (GCDs) over the inte-
gers was the heuristic method GCDHEU of Gonnet et
al [1]. Given two polynomials a,b € Z[z], this method
computes the GCD of a(z) and b(z) by computing the
integer GCD of a(n) and b(n) for a suitably chosen in-
teger m, then reconstructs the polynomial GCD from
this integer GCD. This method reduces a polynomial
GCD computation to one large integer GCD computa-
tion. Because the integer GCD operation was carefully
implemented in the Maple kernel (in compiled C), this
method had an advantage, though not asymptotic, over
other GCD methods. The same is the case with other
computer algebra systems.

There are two competing methods that one should
consider if one is going to implement a fast algorithm
for GCDs in Z[z]. Throughout this paper we will
call these two methods the modular method and the
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Hensel methods, though both are “modular methods”.
Chapter 6 and 8 in Geddes et al., [2], give descriptions
of all three methods.

The modular method computes the GCD(a, b) mod-
ulo suitably chosen primes, usually machine primes,
then combines these modular GCDs using Chinese re-
maindering. This method was never seriously consid-
ered in Maple because Maple was simply not efficient
enough at computing GCDs modulo small primes to
make it competitive.

The Hensel method begins by computing the GCD
modulo a single prime p. Hensel’s lemma is then applied
to lift this image GCD and its cofactor to a power of
p which is sufficiently large to enable reconstruction
of the GCD over Z. Linear and quadratic versions of
Hensel lifting exist. The linear Hensel method was
implemented in Maple but it was not competitive with
the heuristic method because the supporting polynomial
arithmetic modulo small primes was not efficient.

Let us look at the theoretical complexity of the
methods. Let ¢ = GCD(a,b) where a,b € Z[z].
Consider a GCD problem where the degree of the
GCD g is n, the largest coefficient of g is m digits in
length, and the cofactors @ = a/g and b = b/g are
the same size as the GCD. We call this the balanced
GCD problem. Assuming classical arithmetic is used
for integer and polynomial arithmetic, which is usually
the case in practice, the cost of the modular method
and the linear Hensel lifting method is O(n*m+nm?).!
In comparison, the cost of the heuristic method and the
quadratic Hensel lifting method is O(n?m?). Thus if
one is comparing the modular and heuristic methods,
the modular method should be the method of choice.

To implement the modular method effectively, how-
ever, one needs to compute GCDs modulo primes effi-
ciently. Specifically, one computes GCDs in the ring
Z,[x] using the Euclidean algorithm where one chooses
machine primes so that the modular arithmetic is done
using the hardware integer arithmetic instructions. If
every modular arithmetic operation resulted in a stor-
age allocation the efficiency loss would be severe.

TAn analysis of the modular and linear Hensel lifting methods
showing them both to be O(n?m + nm?) is presented by Miola

and Yun in [5].



Furthermore, to be competitive with the heuristic
method where the integer GCD operation will be im-
plemented “in-place”; i.e., the total storage allocated is
linear in the size of the inputs and it is carefully recycled
during the GCD computation to eliminate costly stor-
age management overhead, then the GCDs computed
modulo machine primes must likewise be computed in-
place. Even if each polynomial remainder operation in
the Euclidean algorithm resulted in a storage allocation,
considerable efficiency is lost — an overall factor of be-
tween 2 and 3 in our experience. Thus storage must be
pre-allocated and recycled as needed. This means that
in CA systems like Maple and Axiom, one must write in
the systems implementation language, i.e., in C or Lisp
or assembler. Similar implementation difficulties arise
if one wants to implement linear Hensel lifting.

Implementing the modular method or the linear
Hensel lifting method properly is a major implemen-
tation task. Note, in the context of a CA system, there
is no point in doing this if the polynomial multipli-
cation and exact division algorithms do not also use
correspondingly fast algorithms because they are used
more frequently. In fact, in most CA systems, poly-
nomial multiplication and exact division are quadratic,
i.e., have complexity O(n?m?).

For a long time we did not attempt this in Maple be-
cause the heuristic GCD algorithm performed satisfac-
torily. However, to support the factorization of polyno-
mials over the integers, Monagan in [6] implemented the
modp1 package. This package makes available in Maple
a new data structure for polynomial arithmetic in Z,, [z],
including routines for multiplication, quotient and re-
mainder, GCD and resultant, evaluation and interpola-
tion. For the machine prime case, the data structure
is essentially an array of machine integers and all men-
tioned polynomial operations execute in-place. Using
this package Monagan coded the modular GCD method
and found that the modular method was almost always
better than the heuristic method, hence, it is now the
default method in Maple.

1.1 Over Algebraic Number Fields. The prob-
lem being addressed in this paper is how to compute uni-
variate polynomial GCDs over algebraic number fields.
Let Q(a) be an algebraic number field with minimal
polynomial M (y) of degree d?. It is possible to apply the
same ideas for computing GCDs over Z to Q(«). Again,
one can design a modular method, a heuristic method,
and Hensel methods. Comparing the algorithms is more
difficult than in the integer case because the complexity

2In this paper we consider only the case of a simple algebraic

extension over Q.

depends on M (y). We consider g(z) a GCD of degree
n in x with coefficients polynomials of degree d — 1 in y
whose coefficients are integers of size m digits in length.
To compare algorithms we again consider a balanced
GCD problem where the cofactors are the same size as
the GCD.

Langemyr and McCallum studied the modular
method for Q(a) in [4]. The modular method has the
same implementation disadvantage as before, namely,
in order to obtain good performance, the implemen-
tation requires a lot of careful coding at the system
level. One must compute GCDs over the residue ring
Z,.[y]/(M) for suitably chosen (machine) primes p; ef-
ficiently. The modular method of Langemyr and Mc-
Callum had a technical difficulty that required that «
be an algebraic integer. This was resolved by Encar-
nacion in [3]. Encarnacion also used Wang’s rational
reconstruction [8] so that a small GCD can be detected
early. Using Encarnacion’s improvements, we show in
Appendix A that the theoretical running time for our
balanced GCD problem is O(dm?n + d*mn?).

Smedley et al in [7] extended the heuristic method
to Q(«). Their approach is to map the algebraic number
« into Z. One chooses a suitable integer n, replaces
a by n and computes the GCD modulo the integer
M(n). If the integer M(n) has small integer factors,
the polynomial GCD computation is likely to fail. This
can be avoided by dividing M(n) by small factors of
M (n) or by choosing a different integer n. This method
has the advantage of reducing the computation to a
single univariate GCD modulo a large integer M (n),
thus requiring only a good implementation of long
integer arithmetic. The method has time complexity
O(n?m?2d?) for our balanced GCD problem.

Therefore it seemed to us that a good implementa-
tion of the modular method would also be the fastest
method for computing GCDs over Q(«). This turned
out to be the case. The implementation of the modular
method is discussed in the Section 2. Our main contri-
bution to this method is a discussion of the implemen-
tation details needed to make the method competitive.

We also implemented a quadratic Hensel lifting
method for computing univariate GCDs over Q(«). The
algorithm is essentially the same as that for over Z.
A description can be found in Chapter 6 of Geddes
et al [2]. The running time is also O(n?m?d?) for
the balanced GCD problem. We realized that in the
case of univariate GCD computation, going from the
GCD mod p?* to mod p2*"" can more easily be done
by computing the GCD mod pzlc+1 directly instead of
constructing it from the GCD mod p2k using Hensel’s
lemma. Furthermore, the problem of an “unlucky”



prime in the Hensel methods® can be neatly resolved
if we simply use a different prime at each step, i.e.,
we compute the GCD mod pik for k =0,1,2,.... We
call this simple method the prime-power method. The
algorithm is described in detail in Section 3. It is
the simplest of the four algorithms to implement. We
show in Appendix A that it also has time complexity
O(m?d®n?), the same as the heuristic and quadratic
Hensel lifting methods.

Section 4 compares the four methods for two classes
of GCD problems. All methods were implemented on
top of the modpl package where the core routines are
implemented carefully in compiled C code. The tim-
ing comparisons show that in practice the modular
method is indeed the fastest method as expected from
the theoretical complexity estimates. They also show
that the that prime-power method is competitive with
the heuristic method, always better than the quadratic
Hensel lifting method by a factor of 2 to 3, and compet-
itive with the modular method for modest coefficients.
Since the modular method is difficult to implement well,
and since there is really no point in implementing it un-
less one does so for polynomial multiplication and di-
vision as well, we recommend the prime-power method
as a good alternative to the system implementor. This
is the practical conclusion of the paper. The other con-
clusion is that there is no point in using the quadratic
Hensel lifting for univariate GCDs — the prime-power
method has the same asymptotic complexity but should
always be faster by a constant factor and it easier to
implement. The reader may now study the details of
the modular method in Section 2, of the prime-power
method in Section 3, and the timing comparisons made
in Section 4.

Throughout the paper we use these notations, defi-
nitions, and assumptions.

Let K = Q(a) be an algebraic number field over Q.
Let M(y) € Z[y] be the minimal polynomial for o with
degree d > 0.

Let lc(a(x)) denote the leading coefficient of the poly-
nomial a(z).

Normally M (y) would be monic over Q. To sim-
plify the presentation of algorithms, we multiply the
minimal polynomial by the least common multiple of
all denominators appearing in the coefficients. Conse-
quently, the primes chosen in the algorithms must not
divide le(M(y)).

Let A be the discriminant of M (y).
Let Z,, denote the integers modulo n.

3The problem is that the Hensel methods will not detect an
unlucky prime until one lifts to a bound, which may be expensive.

Let RY = Zp[y]/(M(y)) be the finite ring of polynomials
modulo M (y) modulo p, a prime.

Let a(x),b(z) € K[z]. We wish to compute g(x) =
GCD(a,b). We denote the cofactors of a(x) and b(x)
by a(z) = a(z)/g(z) and b(z) = b(z)/g(x). In all our
algorithms we assume that the input polynomials are
scaled to have integer coefficients so that we may view
them as polynomials in Z[y][z].

2 The Modular Method

In rough outline, the modular method [3] with rational
reconstruction [8] computes the GCD(a, b) as follows:

Step 1 Choose primes p; which do not divide A, le(M),
le(a(z)), and le(b(x)). Let m = IL;p;.

Step 2 Compute g; = GCD(a mod p;,b mod p;) and
make the g; monic. If the GCD computation fails
modulo p; then use a different prime. If g; = 1 then
output 1 and stop.

Step 3 Apply the Chinese remainder theorem to ob-
tain f € Z,,[y][x] such that f = g; mod p;.

Step 4 Apply rational reconstruction to the integers
in f. If rational reconstruction fails then go to
step 2. Otherwise we obtain h € Q[y][z] such that
h = f mod m.

Step 5 View h(xz) as a polynomial in Klx] =
Qlyl[x]/(M(y)). If hla and h|b then output h and
stop. Otherwise, go back to step 1 and try a differ-
ent set of primes.

The conditions on the choice of the primes in step
1 are the usual ones. The condition that p; not divide
le(M) guarantees that M does not vanish modulo p;,
and it is necessary for reconstruction of g. The other
conditions are sufficient to ensure that deg(g;) > deg(g)
so that the algorithm does not mistakenly return a
divisor of g.

The GCD computation in step 2 is performed over
the finite ring Z,,[y]/(M). Arithmetic in this ring is
implemented as polynomial arithmetic. If this ring is
not a field then the GCD computation may “fail” in step
2 if an inverse does not exist. If p; is chosen suitably
large, the probability that this happens is low. If it
happens, one simply chooses another prime.

Rational reconstruction in step 4 can “fail” because
not all integers in Z,,, correspond to rationals of a fixed
size. If this happens, it just means that more image
GCDs are needed in step 2.



The trial division in step 5 is to detect unlucky
primes. The prime p; is unlucky if res, (@, b) = 0 mod p;,
equivalently, deg(g;)>deg(g). This happens rarely. But
if it happens, g; cannot be used. Note, if we find that
deg(g;) > deg(gx) then p; must be an unlucky prime so
g; can be discarded.

How many primes? The algorithm as sketched is
incomplete because it does not say how many primes
are needed. One needs enough primes to reconstruct the
fractions in the GCD but one does not know in advance
how large those fractions are. Langemyr and McCallum
in [4] use a bound on the size of the coefficients in
the GCD to establish how many primes to use. This
is inefficient when the GCD is small. One could try
steps 3 — 5 after each modular GCD is computed until
eventually one has enough primes to reconstruct the
GCD. However, this is inefficient as too much work is
done in step 4.

The approach taken by Smedley et al in [7] for the
heuristic method is to assume that either the GCD or a
cofactor has coefficients of size at most half the size of
the coefficients in the input.

Another approach that we tried was to estimate the
size of the coefficients in the GCD after doing one image
GCD computation from the following information: (i)
the degree of a(z) and b(zx), (ii) the size of the largest
integer coefficients in a(x) and b(z), and (iii) the degree
of gi(x). One might assume that if the degree of ¢y is
small, then the size of the coefficients of the GCD will
be proportionately small and vice versa.

However, none of these approaches is good if the
GCD has small coefficients. Instead we use the following
simple scheme which ensures early detection of a GCD
with small coefficients. We start with one prime then
we double the number of primes used each time in steps
1,2 before we attempt steps 3,4,5. This ensures that
we do not execute step 4 too often and that we do
not overestimate the size of the fractions in the GCD
by more than a factor of two. Here is a complete
description of the algorithm.

2.1 Algorithm ModularGCD.

Input Polynomials a,b € Z[y][z] and minimal polyno-
mial M € Z[y].

Output ¢ € Qly|[z] where ¢ = GCD(a,b) over
Qlyl[=]/(M(y))-

Step 0 (Initialization)
Set k = 0 — the number of the current prime
Set m = 1 — the product of primes
Set D = min(deg(a), deg(b)) — upper bound on the

degree of the GCD
Set g = 0 — the combined image GCDs

Step 1 (Choose next prime)
Set k =k + 1.
Choose the next prime py such that A #Z 0 mod py,
le(M) # 0mod pyg, lc(a) £ 0 mod pg, and lc(b) £
0 mod py.

Step 2 (Image computation)
Compute g = GCD(a mod py, b mod py).
If the GCD computation fails then set k = k — 1
and go to step 1.
If g = 1 then output 1 and stop.
If deg(gx) > D then set k = k — 1 and go to step 1
(unlucky prime)
If deg(gr) < D then (all previous primes were
unlucky) then

Set g1 = gr,m = 1,k =1,g =0and D =
deg(gr.)-

Step 3 (Chinese remaindering)
Update g so that g = gx mod p; and g = g mod m.
Set m = pg X m.
If £ < 2™ for some n then go to step 1.

Step 4 (Rational reconstruction)
Apply rational reconstruction to the integers in g
to obtain h € Q[y|[z] such that h = g mod m. If
rational reconstruction fails then go to step 2.

Step 5 (Trial division)
View h as a polynomial in K[z] = Q[y][z]/(M (y)).
If hla and h|b then output h and stop.
Otherwise, go to step 1.

The theoretical cost of the algorithm for the balanced
GCD problem is determined in Appendix A to be
O(dm?n + d*mn?).

A more complicated approach with the same
asymptotic complexity which reduces the number of
modular image GCDs to can be obtained from the fol-
lowing idea. After computing each image GCD try to
reconstruct one rational coefficient. If unsuccessful, or
the rational is different from that constructed in the pre-
vious iteration, compute another image GCD and try to
reconstruct the rational coefficient again. If successful,
and the rational is the same as that computed in the
previous step, assume that the rational is correctly de-
termined and proceed to reconstruct the next coefficient
in the polynomial in the same manner. Keep doing this
until every rational coeflicient in the GCD is so obtained
and then attempt step 5. This approach will require
only one more image GCD computation than what is
necessary.



3 The Prime Power Method

We first consider the trial division problem. This is
important because it is often the bottleneck in a GCD
computation. Given a,b € K[x] we want to test if al|b
over K, and if it does, to return the quotient. A fast
way to show that a does not divide b is to choose a
(machine) prime p which does not divide l¢(a) and does
not divide l¢(M) and do the division modulo p. If the
division is successful, and the remainder mod p is not
zero, then we can stop. We have proven that a does not
divide b. The division fails if and only if the l¢(a) is not
invertible modulo p. This may happen if Z,[y]/(M (y))
is not field. If the primes are large enough, this failure
will happen with low probability. Should it happen, we
choose another prime and try again. To compute the
quotient g, we try to reconstruct it from the quotient
modulo pik for k=0,1,2,... .

Input Polynomials a,b € Z[y][x] and minimal polyno-
mial M (y).

Output Either ¢ € Q[y|[z], the quotient such that
b—aq = 0 over Q(a), or false, meaning a does
not divide b with 0 remainder.

Step 0 (Initialization)
Set k = 0.

Step 1 (Choose new prime)
Choose the next (machine) prime pg such that
le(M(y)) £ 0 mod py and le(a(z)) is invertible mod
M (y) mod py.

Step 2 (Compute quotient)
Compute the quotient ¢ and remainder r of b
divided by a modulo pik. If the remainder r is
not zero then output false and stop.

Step 3 (Rational Reconstruction)
Apply rational reconstruction to the coefficients of
g modulo pik. If rational reconstruction fails, set
k=k+1 and go to step 1.

Step 4 (Test quotient)
Compute error = a — ¢b over Q[y][z].
If M(y) divides a — ¢b over Q[y][z], output ¢ and
stop. Otherwise set k = k 4+ 1 and go to step 2.

This algorithm terminates because it must eventu-
ally choose a prime py such that lc(a) is invertible and
pik is large enough for reconstruction of the fractions in
the quotient.

The implementation of step 4 should be done coef-
ficient by coefficient so that if pik is too small, this can
be detected early.

One could try to estimate the size of the rational
coefficients in the quotient and use an appropriate power
of pj directly. This, however, is non-trivial as one
must estimate how big the coefficients in 1/lc(a(z)) are
without computing it.

3.1 Algorithm PrimePowerGDC. The prime-
power algorithm for computing the GCD(a, b) is essen-
tially the same as that for the trial division algorithm.
The differences are in the conditions on the primes, the

handling of unlucky primes, and the early detection of
a GCD which is 1.

Input Polynomials a,b € Z[y][z] and minimal polyno-
mial M € Z[y].

Output ¢ € Qly][z] where ¢ = GCD(a,b) over
)

Qlyl[z]/ (M (y)).

Step 0 (Initialization)
Set k =0, D = min(deg(a), deg(b)).

Step 1 (Choose next prime)
Set k=Fk+1.
Choose the next (machine) prime py, such that A #
0 mod pg, le(M) # 0mod pg, lc(a) # 0 mod pg,
and lc(b) # 0 mod py.

Step 2 (Image computation)
Compute g = GCD(a mod p%k, b mod pik)
If the GCD computation mod p2" fails then set
k =k —1 and go to step 1.
If g = 1 then output 1 and stop.
If deg(gr) > D then set k = k — 1 and go to step 1
(unlucky prime)
If deg(gr) < D then (All previous primes were
unlucky)

Set g1 = gk, k =1 and D = deg(gx)-

Step 3 (Rational reconstruction)
Apply rational reconstruction to the integers in gy
mod pzk
If rational reconstruction fails then go to step 2.

Otherwise we have h € Q[y][z].

Step 4 (Trial division)
View h as a polynomial in K[z] = Q[y][z]/(M(y)).
If hla and h|b then output h and stop.
Otherwise go to step 1.

The correctness of the prime-power algorithm is
established by arguing that it must eventually choose a
prime power pik such that the prime py is not unlucky,



the GCD computed in step 2 does not fail, and pik is
large enough to enable reconstruction of the rational
coefficients in the GCD g(x).

The prime-power algorithm for GCD computation
may compute up to twice the number of image GCDs
needed. This can be reduced to at most 50% more
than needed by combining the last two images g1 mod

pﬁk__ll with gx mod pzk using Chinese remaindering.

4 Implementation Details and Timings Results

The comparison of the four methods presented in this
section was done on a Sun 10 using Maple V Release 4.
This version of Maple uses classical (i.e., quadratic) al-
gorithms for integer and polynomial multiplication and
division. To make a consistent and fair comparison, the
main operations of all four GCD algorithms are imple-
mented using the modpl package in Maple. The modpl
package implements arithmetic for Z,[x] in the Maple
kernel in compiled C. There are two separate represen-
tations, one for moduli which fit in a machine integer,
and one for moduli which do not. In both cases, the
basic arithmetic operations of addition, multiplication,
quotient and remainder, utility routines such as Chinese
remaindering and conversions from Maple’s general pur-
pose representation to the modpl representations, are
implemented in the Maple kernel (in compiled C) using
“in-place” and “on-line” algorithms. These algorithms
allow sums of products to accumulate in the polynomial
multiplication and division algorithms before reducing
modulo n. Thus the core routines for arithmetic in Z,, [z]
are efficiently implemented. See [6] for details.

Since the heuristic method maps the computation
in Q(a)[z] to Zy[z], the GCD computation that it
does uses the modpl code directly. The other three
methods do arithmetic in Rf[z]. Generic Maple code
is used for the polynomial operations and the modpl
package is used for the coefficient arithmetic in Rg . For
M (y) of low degree, for example degree d = 2,3, or 4,
the overhead of the Maple interpreter and the storage
allocations that take place for each arithmetic operation
in R;f may be significant. This overhead drops quickly
to zero as d increases.

The timing data presented includes the time spent
doing the two trial divisions required by all four meth-
ods. We also monitored the time spent doing Chinese
remaindering, rational reconstruction, and the modular
GCDs. We found that the time spent doing Chinese re-
maindering and the rational reconstruction never dom-
inated the overall time.

Balanced Case. The data in Table I below was gen-
erated as follows. All timings are in CPU seconds. The
parameter m specifies the size of the integer coefficients

in the GCD g(x), and the parameter d the degree of the
minimal polynomial M(y). M(y) is a random, dense,
monic, irreducible polynomial of degree d with random
coefficients of size d/2 digits in length. g(z) and the co-
factors a(z) and b(z) are random dense polynomials of
degree n = 4 in x with coeflicients random dense polyno-
mials of degree d — 1 in o whose coeflicients are random
integers of length m digits. Thus the input polynomials
a(x) and b(z) are dense of degree 8.

Recall that the theoretical analysis for the complex-
ity of the four methods for this GCD problem for the
modular method was O(dm?n+d?mn?) and O(d?*m>*n?)
for the other methods. Hence, the modular method
should be the fastest method for large m. That the
increase in timings is not smooth is due to the owver-
shoot present in the methods, i.e., the doubling of the
number of primes in the modular method and the dou-
bling of the size of the modulus in the other methods
overshooting the size of the largest integer in the GCD.

Small GCDs. An important case is when the GCD
is small. This is the worst case for the Euclidean
algorithm but usually the best case for the modular
algorithms. All of the algorithms except the heuristic
algorithm should do better in this case because. The
Maple implementation of the heuristic algorithm begins
with a medium sized evaluation point. Hence, we
expect to find the modular, prime-power and Hensel
methods improving relative to the heuristic method
when compared with the balanced case.

The timings in Table II are for GCDs of degree
2 with coefficients random integers of size 1 + m/8
digits. The cofactors are degree 6 and the cofactors have
coeflicients of size 2m digits. The GCDs and cofactors
are dense. Thus the input polynomials a(x) and b(x)
here have the same size as those in the balanced case
but the GCD is relatively small.

Notice that the cost of division is very significant
compared with the time to compute the GCD — in fact,
it dominates the cost of the faster algorithms. This is
because the trial divisions, which are required by all
four methods, must construct the cofactors which are
relatively large.
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div = trial divisions
mod = modular algorithm
pow = prime-power algorithm
heu = heuristic algorithm
hen = Hensel algorithm
Key
m d div mod pow heu hen
8 2 .08 .36 .28 13 1.43
16 2 .08 .5l .28 .15 1.78
32 2 10 .68 .80 .28 1.91
64 2 18 .96 .68 .78 2.06
128 2 .66 2.10 1.61 2.58 4.68
256 2 1.83 5.25 3.75 9.16 | 10.26
512 2 5.00 | 12.90 | 10.35 | 28.53 | 24.80
1024 2| 1888 | 2881 | 2840 | 99.13 | 67.88
2048 2| 72.68 | 101.21 | 105.40 | 468.26 | 254.56
8 4 15 .40 .76 .35 2.68
16 4 .25 .60 .81 .60 3.70
32 4 .28 1.33 1.43 1.58 3.76
64 4 .51 1.55 1.50 3.18 3.98
128 4 1.95 3.58 4.11 10.31 11.65
256 4 8.03 | 12.51 12.78 | 37.16 | 26.75
512 4| 24.05 | 34.76 | 35.63 | 123.96 | 67.23
1024 4| 91.10 | 105.08 | 126.23 | 480.90 | 205.95
8 8 1.15 1.33 1.55 2.58 6.18
16 8 1.21 1.76 1.98 3.91 8.83
32 8 1.96 3.11 3.75 | 10.80 9.68
64 8 4.26 5.45 5.86 16.60 12.11
128 8| 10.13 | 12.58 | 16.95 | 48.56 | 34.80
256 8| 42.23 | 49.06 | 53.93 | 164.01 | 90.60
8§ 16 | 23.36 | 29.71 | 30.83 | 88.90 | 47.05
16 16 | 29.28 | 28.35 | 33.00 | 103.38 | 60.06
32 16 | 41.83 | 44.23 | 47.06 | 140.86 | 57.88
64 16 | 52.38 | 55.83 | 57.01 | 201.98 | 94.30
128 16 | 122.05 | 127.40 | 138.03 | 422.91 | 184.85

Table II: Small GCD.




Appendix A: Complexity Analysis

We give a running time analysis for the cost of com-
puting the GCD of a,b € K|[z] using the modular and
prime-power algorithms. The running time will depend
on the degree of the GCD g(z), the degree of the input
polynomials a(z), b(z), the size of their coefficients, the
degree d of the minimal polynomial M (y), and the size
of its coefficients.

We consider the case of dense polynomials through-
out, that is, M (y), g(y,z), a(y,z), b(y, z) are dense in y
and x. We consider the balanced case where the GCD
g and the cofactors are polynomials of the same size; of
degree n and with integer coefficients of size m digits.
Thus the degree of the input polynomials a(z) and b(x)
is 2n. To further simplify the analysis we consider cases
where M (y) is monic and its integer coefficients are rel-
atively small in size compared with m, thus, the size of
the integer coefficients in a(z) and b(x) will be approx-
imately 2m digits in length. We remark that problems
in practice often admit these assumptions.

In our complexity estimates, we assume that integer
and polynomial arithmetic use classical algorithms for
multiplication and division with remainder, i.e., have
quadratic complexity. We assume also that the cost of
trial division has the same complexity or lower than the
cost of computing the GCD. This is reasonable since the
same modular, heuristic, or prime-power method can be
used for division.

The modular GCD algorithm.The modular algo-
rithm does the following computations.

1 Reduction (in Step 2): Map a,b € Z[y|[z] to a,b €
Zy,[y][z]. This requires taking 2(n+ 1)d coefficients
of length O(m) digits modulo p. The cost of taking
one coefficient mod p is O(m) since we are assuming
p is a machine prime, i.e., arithmetic in Z,, is O(1).
Hence the cost of a single reduction is O(dnm)

2 GCD computation (Step 2): Computing a GCD in
Z,[y][x]/(M(y)). Since our polynomials are dense
of degree 2n, and the GCD computed has degree
n, the Euclidean algorithm does O(n?) arithmetic
operations in Rg. Each arithmetic operation in Rg
requires O(d?) operations in Z,. Hence the cost of

a single GCD is O(n?d?).

3 Chinese remaindering (Step 3): Combining m im-
ages requires applying the Chinese remainder algo-
rithm to each set of coefficients. There are at most
nd integers to reconstruct (the leading coefficient is
monic hence does not require reconstruction), each
of which costs O(m?). Hence the cost of Chinese
remaindering is O(ndm?).

4 Rational reconstruction (Step 4): Rational recon-
struction of a single fraction uses the Euclidean
algorithm. The cost for reconstructing a fraction
from an integer modulo a modulus of length m dig-
its is quadratic, i.e., O(m?). Since there are nd
coefficients to reconstruct, the cost of rational re-
construction is O(ndm?).

Since unlucky primes are rare, and we need O(m)
primes to reconstruct the GCD, steps 1 and 2 are done
O(m) times. Since the number of primes used before
reconstruction is attempted, is doubling at each step,
the cost of step 3 and step 4 is dominated by the last
time it is executed. This yields a total cost of O(dnm?)
+ O(mn?d?) + O(ndm?) + O(ndm?) for steps 1,2,3,4
respectively, that is O(dnm? + d?n?m) overall.

The prime-power GCD algorithm.Since it will be
shown that the cost of the prime-power GCD algorithm
is quadratic in the parameters n, m, d, and the algorithm
is doubling the size of the modulus at each step, the last
step — where p2" enables reconstruction of the GCD, will
dominate the cost. This will occur when the length of
p?" is O(m). The prime power GCD algorithm does the
following computations.

1 Reduction (in Step 2): Map a,b € Z[y|[z] to
a,b € Z o [y][z]. This requires taking 2(n + 1)d

k
coefficients of length O(m) digits modulo pik a
prime of length O(m) digits. The cost of taking

one integer coefficient mod pik is O(m?). Hence
the cost of a reduction is O(dnm?)

2 GCD computation (Step 2): Computing a GCD
in Z [yl[z]/(M(y)). Since our polynomials are
k

dense of degree 2n, and the GCD computed has
degree n, the Euclidean algorithm does is O(n?)
arithmetic operations in Z o [y]. Each arithmetic
k
operation requires O(d?) operations in ZPQk where
k

arithmetic operations cost O(m?). Hence the cost
of a single GCD is O(n?d*m?).

3 Rational reconstruction (Step 3): O(ndm?) - same
as for the modular method.

Hence, the overall cost is O(d?*m?n?). It is dominated
by the last GCD in step 2.



