Form 101 Research Proposal 1 Monagan, 195283

Proposal: Algorithms for Multivariate Polynomials

1 Research Area

The primary facility of Computer Algebra Systems like Maple, Magma, Mathematica, and
Singular, is their ability to do polynomial arithmetic and polynomial algebra over various
rings and fields. Many of the other facilities build on these core capabilities. I propose to
work on problems in this area, including

(i) sparse polynomial multiplication and division,
(ii) polynomial GCD computation over algebraic function fields and quotient rings, and

(iii) polynomial factorization over algebraic number and function fields.

For (i), our sequential algorithms in [15] that use heaps to multiply and divide polynomials
with integer coefficients are very good. They out perform Magma, Singular, and Maple by
factors of 10 to 200. It is perhaps surprising that such improvements are still possible for
core arithmetic operations. The challenge now, however, is to design parallel algorithms that
are effective in practice.

For (ii) we have developed a first sparse modular GCD algorithm in [9]. It is a Las Vegas
algorithm. Although it works well in practice, we do not yet have a complete analysis for
the failure probability. There is also room for improvement in the sparse interpolation. And
we’d like to generalize the algorithm to compute GCDs over rings with zero divisors.

Project (iii) is a new project for us. Our algorithm for (ii) improves considerably the
effectiveness of the Trager-Kronecker algorithm (see Ch. 8 of [4]). But the Trager-Kronecker
algorithm introduces a severe expression swell for multivariate polynomials. We propose to
design and implement new Hensel lifting based methods.

2 Background, Literature Review and Recent Progress
2.1 Polynomial multiplication and division.

Let f = fi+fo+..4+ fmnand g = g1 + g2 + ... + g, be two sparse polynomials with
m = #f terms and n = #g¢g terms. If we order the terms in a monomial ordering so that
fi>fo>..> fnand g1 > g2 > ... > gp, and multiply f X g by computing

(g1 X f+g2xf)+gsx f)+.)+gux [

then we can use merging to add polynomials. This algorithm does O(mn) coefficient multi-
plications but may do as many as O(mn?) monomial comparisons. Similarly, if we divide h
by f to get a quotient g and remainder r using

r=(((h=0f) =gf) =) = gnf

then we again can use merging to subtract polynomials. This too can do as many as O(mn?)
monomial comparisons. An example where this bad behaviour occurs is f = v+ 2%+ ... + 2™
and g =y +y?+ ..+ y"

Form 101 Research Proposal 2 Monagan, 195283

Three approaches studied in the literature include Horowitz’s binary trees [8], Yan’s
“geobuckets” [22], and Johnson’s binary heaps [10]. For polynomial multiplication all do
O(# f#gminlog(#f,#g)) monomial comparisons. For division, Yan’s and Horowitz’s algo-
rithms have the same complexity but Johnson’s algorithm is O(#f#glog#g¢). All assume
rational arithmetic.

Maple uses a divide and conquer algorithm to multiply in O(mn log(mn)) monomial com-
parisons. Magma uses a hash table, hashing on the monomials, to multiply using O(mmn)
hashes. It then does O(mnlog(mn)) monomial comparisons to sort the result. In [5], Fate-
man reports that hashing does not work well for large polynomials because of the large
number of random memory accesses.

In [15] we show how to divide over the integers using a heap in O(# f#glogmin(#f, #g))
monomial comparisons and O(# f#g¢) integer operations using a fraction-free algorithm. In
practice, the heap algorithms perform very well. They have a small working set of memory —
they need O(min(m, n)) storage for the heap and they access the terms of f and g sequentially
and write out the terms of f x g sequentially. Thus they have good locality. Another nice
property is that one can re-use working storage for the coefficient arithmetic so that no
garbage is created, thus eliminating the need for garbage collection.

Less work has been done on parallel algorithms. For polynomials f = ag+a1z+...+apz™
and g = by + b1z + ... + b,z", to multiply f x g, Wang in [20] used

m-+n

Z Cyz* where C) = Z a;b;.

k=0 i+j=k

Here, the C}, can be computed independently in parallel. This approach can also be applied
to multivariate f(z,y, 2, ...) and g(z,y, 2, ...). Just represent them recursively as polynomials
in z with coefficients a; and b; polynomials in the other variables. Even if f and g are sparse,
their univariate representation in z is likely to be dense.

If the polynomials are dense then FFT based methods are likely to be much faster. Xavier
and Iyengar’s text on parallel algorithms describes how to use an FFT to multiply in parallel
and Bini and Pan in [1] give an FFT based parallel division algorithm. In [13], Maza et.
al. implemented multiplication modulo a (dense) triangular set modulo a prime using the
FFT. Although many parallel experiments have been done, with the possible exception of
MuPad, none of the computer algebra systems, as far we know, exploit parallelism in their
polynomial multiplication and division routines.

2.2 Polynomial GCD computation.

If we are simplifying ratios of univariate polynomials over a field, GCDs exist and can be
computed by the monic Euclidean algorithm and cancelled out. It is well known that for
multivariate polynomials, an intermediate expression swell occurs that makes the Euclidean
algorithm ineffective for polynomials of even modest degree. In the last 40 years, efficient
algorithms for computing multivariate polynomial GCDs over Z have been developed.

The first was the modular method of Brown [2]. We mention also Moses and Yun’s
EZGCD algorithm [16], Zippel’s sparse modular GCD algorithm [23, 24|, the heuristic algo-

Form 101 Research Proposal 3 Monagan, 195283

rithm of Char, Geddes and Gonnet [4], and Kaltofen’s black box algorithm [3], each of which
introduced a new technique for GCD computation over Z.

Some work on parallel implementations of Zippel’s algorithm has been done. We mention
the work of Rayes, Wang and Weber in [21] and Murao and Fujise in [17].

In [11], as one step in the process of solving a system of polynomial equations, Lazard
describes an algorithm which needs to compute polynomial GCDs modulo triangular sets.
Let P = Q(t1,-.,tk)[y1, -, yn) and I = {f1,..., fu) C P be a zero-dimensional ideal in P.
If fi € Plyi,...,ys] with deg, (f;) > 0, then the set {fi,..., fp} is called a triangular set.
Lazard’s algorithm needs to compute GCDs of univariate polynomials A and B over the
quotient ring R = P/I where it will often be the case that R has zero divisors, i.e., I is not
prime.

In [14], Moreno-Maza and Rioboo show how to do this. However, their algorithm is non-
modular and thus results in an expression swell. In [6] we developed a modular algorithm
for the case £ = 0, I maximal, i.e., R is an algebraic number field with multiple extensions.
Subsequently, we modified our algorithm to treat zero divisors: we reconstruct and output
either the ged of the input polynomials or a zero divisor — a factor of some f;(y;).

In [7] we developed and implemented a dense multivariate modular GCD algorithm for
the case £ > 0, n = 1, I maximal, i.e., R is an algebraic function field in one field extension.
In [9] we developed a sparse multivariate modular GCD algorithm for the case £ > 0, n > 0,
I maximal, i.e., R is an algebraic function field with multiple field extensions. What remains
to be done is a treatment of zero-divisors in R for the case k > 0.

2.3 Polynomial factorization.

The literature includes several algorithms for factoring polynomials over algebraic number
fields, including those of Trager (see [4]), Wang [19], and Lenstra [12]. Of these, Trager’s
algorithm generalizes immediately to function fields so we outline the major steps of his
algorithm here for later reference.

Let F = Q(t1, ..., tx). Let m(z) be an irreducible polynomial in F[z] and L = F[z]/(m).
So L is an algebraic function field in k parameters ¢4, ..., t,. Given a polynomial f(z) € L[z],
the Trager-Kronecker algorithm factors f(z) into irreducible factors over L using a reduction
to a factorization problem in F'[z]| for which we already have effective algorithms. Let ||f||
denote the norm of f(z). The norm can be computed using ||f|| = res,(f(z), m(z)) € F[z],
that is, by computing a polynomial resultant. If f factors as f = fifs...fx over L, Trager’s
algorithm uses the fact that

@) A=A L2l >] fil], and
(ii) f; isirreducible in L{z] <= ||fi|| is irreducible in F[z].

It computes and factors ||f|| and obtains f; using f; = ged(f,||fi]), a GCD computation
in L]z]. Note, it can happen that ||f;|| = ||f;||- In which case a workaround is required.
This algorithm is used by many (all?) computer algebra systems for factoring polynomials
over function fields. Applying our GCD algorithm from [9] to compute ged(f, || f;||) in L[z]
greatly improves the effectiveness of this algorithm.

Form 101 Research Proposal 4 Monagan, 195283

3 Research Proposal
3.1 Polynomial multiplication and division.

We have seen that the complexity of several algorithms for multiplying polynomials is
O(#f#glogmin(#f,#¢)) monomial comparisons. I believe it is still open as to whether
this is optimal.

We want to extend our multiplication and fraction-free division algorithms in [15] to
be able to multiply and divide modulo a triangular set. This would give us polynomial
multiplication and division over algebraic number fields and function fields as special cases
— cases of practical importance.

We wish to develop parallel algorithms for sparse polynomial multiplication and division.
Let f = fiXa + o Xo+ ...+ foX, and g = ¢1Y1 + ... + g Yin be sparse polynomials with
terms sorted in a monomial ordering so that i.e, X; > Xy, > ... and Y; > Y, > Presently,
one of my students is looking at the following approaches to multiply f x g in parallel.

Let T be a hash table indexed by monomials with entries initialized to 0. For each (3, j)
in parallel, hash X;Y; and add f;g; to T[X,Y;]. Next, sort the terms T into the monomial
ordering using a parallel sorting algorithm. This assumes a shared memory computer and a
fast memory lock/unlock primitive for locking hash buckets.

The second algorithm is a divide and conquer algorithm. Let f = A+ B and g=C+ D
where the terms in A are greater than B and C are greater than D. Thus f x ¢ = AC +
AD + BC + BD. We multiply AC, AD, BC, BD in parallel, either recursively, or using
our heap algorithms. We have all terms in AC' are greater than those in BD so they do not
overlap. Identify where AC, AD, and BC overlap and merge using two processors (merging
from both ends). Similarly for AD, BC with BD.

The third algorithm uses the recursive representation for sparse multivariate polynomials.
It computes the Cj (see section 2.1) in parallel, recursively.

3.2 Polynomial GCD computation.

We propose to improve our algorithm in [9] in the following ways.

1 Generalize it to treat the case when the coefficient ring has zero divisors but the GCD
exists.

2 Our algorithm in [9] reduces GCD computation in L[z, ..., z,] to many univariate GCD
computations in z; over R, = L(t; = o, ..., tx = o4) modulo a prime p, a finite ring,
which are computed using the Euclidean algorithm. Often, over 90% of the total time
is spent doing this. By designing “in-place” algorithms for arithmetic in R,[z] we aim
to obtain an improvement of a factor of 2 to 5 overall.

3 Complete the analysis for the failure probability of our algorithm.

4 Design and implement parallel sparse polynomial (or rational function) interpolation
algorithms for the purpose of computing polynomial GCDs.

Form 101 Research Proposal) Monagan, 195283

3.3 Polynomial factorization.

Illias Kotsirias tried to factor the following polynomial in Maple.
f=3/222 +7/22% +11/22% + 15/222 4+ 19/222 + 23/2a2 — V/3V/ 201,
— Wba1zy — V2V3VTxams — 6V 22314 — V25V 112425 — 10681741/1985.

Since Maple is using Trager’s factorization algorithm, Maple begins by computing the norm
||f||- But the polynomial ||f|| is not easy to compute. It is degree 64 in z¢,x1, ..., x5 with
2,760,681 terms and integer coefficients of over 200 decimal digits in length. Factoring || f||
will be even more difficult! However, a Hensel lifting approach should be very feasible:
pick small random integers ay, ..., as, factor f = f(zo, 71 = ay,...,x5 = as) using Trager’s
method, then Hensel lift the remaining variables z1, ..., Ts.

For a polynomial f € L[zg, x1, ..., Z,] over an algebraic function field L in k& > 0 param-
eters ti,..., 1, there are several ways to approach this. We could evaluate the parameters
first at small integers, factor the resulting polynomial (over a number field) and lift the pa-
rameters. Or we could evaluate the variables x1, ..., z,, first, factor the resulting univariate
polynomial in L[z,] using Trager’s method then Hensel lift z1, ..., z,. What we are presently
investigating is how to do leading coefficient predetermination when working over a algebraic
number or function field L.

Suppose we factor ¢ € L[z, ..., Z,], the leading coefficient of f in the main variable x.
In [18], for L = Q, Wang gives a clever way to determine which factors of ¢ belong to
which factors of f so that the Hensel lifting can be started with correct leading coefficients.
His algorithm computes only integer GCDs of the leading coefficient of f and the leading
coefficients of the factors of ¢ evaluated at (aq, ..., o).

Wang’s technique assumes that GCDs exist and are unique (up to multiplication by
units) in the underlying coefficient ring, Z. For L = Q(i), since Z[i], the Gaussian integers,
is a UFD, Wang’s technique works. But for L = Q(v/=5) and L = Q(s)[c]/(s* + ¢ — 1),
the underlying rings Z[v/—5] and Z[s, c]/(s? + ¢ — 1) are not UFDs. The approach we are
trying is to use GCDs of norms of algebraic numbers and functions to do leading coefficient
predetermination.

4 Training Aspect of the Proposal

I presently have eight graduate students. Two will graduate by the end of 2008 or early in
2009 so I will be supporting 6 students, 1 Ph.D. and 5 Masters. Of the Masters students, two
want to do a Ph.D. I have budgeted approximately (90%) of the funds for graduate student
RA support and travel support for them to attend conferences in the field. The research
problems in this proposal will provide graduate students the opportunity to develop their
mathematical skills and algorithm design and implementation skills.

Form 101 Research Proposal 6 Monagan, 195283

References

[1]
2]

[10]
[11]
[12]
[13]
[14]

[15]

[16]
[17]

[18]
[19]

[20]
[21]

[22]
[23]

[24]

D. Bini, V. Pan. Improved parallel polynomial division. SIAM J. Comp. 22 (3) 617-626, 1993.

W. S. Brown, On Euclid’s Algorithm and the Computation of Polynomial Greatest Common
Divisors, J. ACM 18 (1971), pp. 476-504.

Diaz A., Kaltofen E. On computing greatest common divisors with polynomials given by black
boxes for their evaluation. Proc. of ISSAC ’95, ACM Press, pp. 232-239, 1995.

Geddes K.O., Labahn G., Czapor S. Algorithms for Computer Algebra. Kluwer, 1992.

Richard Fateman. Comparing the speed of programs for sparse polynomial multiplication.
SIGSAM Bulletin, 37 (1) (2003) 4-15.

M. van Hoeij, M. B. Monagan, A Modular GCD Algorithm over Number Fields with Multiple
Field Extensions. Proc. of ISSAC ’02, ACM Press, pp. 109-116, 2002.

M. van Hoeij, M. B. Monagan. Algorithms for Polynomial GCD Computation over Algebraic
Function Fields. Proc. of ISSAC 04, ACM Press, pp. 297-304, 2004.

E. Horowitz. A Sorting Algorithm for Polynomial Multiplication. J. ACM, 22 (1975) 450-462.

Mahdi Javadi and Michael Monagan. A Sparse Modular GCD Algorithm for Polynomial GCD
Computation over Algebraic Function Fields. Proc. of ISSAC ’07, ACM Press, pp. 187-194,
2007. Preprint included.

S.C. Johnson. Sparse polynomial arithmetic. SIGSAM Bulletin, 8 (3) (1974) 63-71.
D. Lazard, Solving Zero-dimensional Systems. J. Symbolic Comp. 13, 117-131, 1992.

A K. Lenstra. Lattices and factorization of polynomials over algebraic number fields. Proc. of
EUROCAM ’82, Springer-Verlag LNCS 144, pp. 32-39, 1982.

X. Li and M. Moreno Maza. Multithreaded parallel implementation of arithmetic operations
modulo a triangular set. Proc. of PASCO 07, ACM Press, 5359, 2007.

M. Moreno Maza, R. Rioboo, Polynomial Ged Computations over Towers of Algebraic Exten-
sions, Proc. AAECC-11 (1995), pp. 365-382.

Michael Monagan and Roman Pearce. Sparse Polynomial Pseudo Division Using a Heap.
Submitted to J. Symbolic Comp., September 2008. Preprint included.

Joel Moses and David Yun. The EZGCD Algorithm. Proc. ACM ’73, pp- 159-166, 1973.

H. Murao and T. Fujise. A modular algorithm for sparse multivariate polynomial interpolation
and its parallel implementation. J. Symbolic Comp. 21 (1996) 377-396.

Wang P.S. The EEZ-GCD Algorithm. SIGSAM Bulletin 14 pp. 50-60, 1980.

Wang P.S. Factoring multivariate polynomials over algebraic number fields. Math. Comp. 30
(1976) 324-336.

Wang P. S. Parallel Polynomial Operations on SMPs. J. Symbolic. Comp., 21 397-410, 1996.

Rayes M., Wang P., Weber K. Parallelization of the Sparse Modular GCD Algorithm for
Multivariate Polynomials on SMPs. Proc. of ISSAC 94, ACM Press, pp. 66-73, 1994.

T. Yan. The geobucket data structure for polynomials. J. Symb. Comput. 25 (1998) 285-293.

Zippel R., Probabilistic Algorithms for Sparse Polynomials. Proc. of Furosam 79’, Springer-
Verlag LNCS, 72, 216-226, 1979.

Zippel R., Interpolating Polynomials from Their Values. J. Symbolic Comp. 9 (1990) 375-403.

