
1 Michael Monagan

Parallel Algorithms for Polynomials
NSERC Discovery Grant Research Proposal, October 2013

My research area is known as Computer Algebra and Symbolic Computation.
I propose to work on the following problems in this area:

1. Polynomial factorization over algebraic number and function fields.

2. Parallel algorithms for polynomial × and ÷ modulo triangular sets.

3. Multivariate polynomial interpolation.

4. Parallel algorithms for polynomial GCD and matrices with parameters.

A primary focus will be the development of parallel algorithms and parallel libraries. I am
using Cilk. Five years ago when I proposed to shift my research focus to this area, multi-core
desktops and servers were becoming the norm for users and research in Computer Algebra
needed to address that reality. At that time Computer Algebra Systems like Magma, Maple,
Mathematica and Singular were all large serial systems. I thought it would be very difficult
to retrofit them to make them parallel systems. Should we instead design a new system that
is designed for parallel algorithms at the outset? Perhaps someone should. But I did not
know enough about parallel algorithm design and implementation to do that. So I proposed
then to build a C library of parallel routines for sparse multivariate polynomial arithmetic
(we did multivariate multiplication and division over Z and Zp) and link these to Maple in
much the same spirit that the LinBox library (see Dumas et. al. [7, 6]) is being developed
for exact computations in linear algebra.

I thought, that by introducing fast multiplication and division into Maple, we would get
a speedup across the system, in particular, that polynomial factorization would get a boost.
My work with Roman Pearce in [21, 22, 23, 24] shows that this is indeed the case. We have
achieved a tremendous improvement. Our parallel software is now the fastest available for
sparse polynomial multiplication and division and Maple’s multivariate factorization code
now runs faster than any other system (see [21]).

Currently, my PhD student J. Hu and I are designing a parallel algorithm for polynomial
GCD computation in Z[x1, x2, ..., xn]. [The algorithm is linear in the number of terms in the
polynomial.] This should benefit any library routines that compute with rational functions,
e.g. solving linear systems involving parameters.

I propose to continue the work I started in [13, 14] with my former student M. Javadi on
algorithms for polynomial factorization over algebraic number and function fields. I propose
to develop a parallel library for polynomial arithmetic modulo triangular sets. This is so
we can parallelize polynomial multiplication, division and GCD over algebraic number and
functions fields. This will improve the performance of polynomial factorization. I believe
that the gain will be even greater than the gain we obtained for polynomials over Z.

I propose also to to look at designing parallel algorithms for linear algebra over algebraic
number, algebraic function and rational function fields. For many operations (determinant,
linear systems, characteristic polynomial) it will be natural to consider modular algorithms
which are easily parallelized. For example, the modular algorithm of Chen and Monagan
from [3] for solving linear systems over Cyclotomic fields could be parallelized.

Today multi-core computers are the norm but the processing capability of GPUs and
hybrid facilities is becoming the new norm. Facing the GPU reality, I propose also to
develop a fast bivariate GCD routine for a GPU.

2 Michael Monagan

1. Polynomial factorization over algebraic number and functions fields and
2. Parallel polynomial multiplication modulo triangular sets.

We consider the problem of factoring a multivariate polynomial A(x1, x2, ..., xn) over an
algebraic number field Q(α) or function field in k parameters t1, t2, ..., tk. In general the
number field (function field) may be presented with multiple field extensions whose minimal
polynomials form a triangular set T . For example, for the function field F = Q(t)(

√
2,
√
t),

the triangular set T is {z21−2, z22− t)}. We let D denote the degree of F (4 in this example).
Trager’s method from [27] reduces factorization in F [X] to Q[X]. It increases the degree

by a factor of D in each variable which introduces a severe expression swell when applied
to multivariate polynomials. In [28], Wang searches for a prime p for which the minimal
polynomial m(z) for Q(α) is irreducible. If such a prime exists (they don’t in general) then
factorization over Q(α) is reduced to factorization over the finite field over GF (pD) with no
expression swell. In [30] Zhi factors a univariate image in F [x1] and uses Hensel lifting over
Q to recover x2, ..., xn. In [13], we also use Hensel lifting but modulo p and use p − adic
lifting to recover the rational coefficients. The Hensel lifting is done modulo T and hence
the efficiency of factorization depends on the efficiency of polynomial multiplication modulo
T modulo p. We use pseudo-division to avoid fractions in the parameters.

Currently, the best approach to factor multivariate polynomials over a field F is to factor
a univariate image over F and recover the other variables, one at a time, using Hensel lifting.
When lifting a variable y we recover the factors modulo (y−α)(k+1) from the factors modulo
(y − α)k. This whole process is sequential, however, as we recover variables one at a time,
and each variable one degree at a time which limits parallelism..

To improve factorization over number fields and function fields we propose the following.
I give details on each separately – especially 3 as it is not obvious how to do that.

1. Develop a parallel algorithm for polynomial multiplication over Q(ω).
In general parallelize multiplication modulo an arbitrary triangular set T .

2. Improve the complexity of diophantine equation solving for the multivariate case.
It is a bottleneck of multivariate factorization.

3. Experiment with using interpolation to recover the factors instead of Hensel lifting to
increase parallelism.

1: Multiplication in Q[z1, ..., zl][x1, ..., xn] modulo T could be parallelized on the coeffi-
cients or we could use an evaluation/interpolation approach for the variables and a modular
approach for Q which generates a lot of parallelism. [For the algebraic function case one
would also interpolate the parameters t1, ..., tk.] I don’t know which approach will be best so I
think we must experiment here. Asymptotically fast algorithms for arithmetic in Zp[z1, ..., zl]
modulo T are studied by Li, Moreno Maza and Schost in [17]. This helps for large D. This
C library has been integrated into Maple (see Li et. al. [18]) as the modpn library. Also,
our recden C library (see Javadi and Monagan [14]) for arithmetic with polynomials over
algebraic number fields modulo p can be used.

2: Suppose A(x, y) = B(x, y)C(x, y) in F [x, y] and suppose the degree of both B and C
is N in both x and y. Assuming classical O(N2) multiplication in F [y] and F [x], Miola and
Yun [19] showed how to modify linear Hensel lifting to update the error A−B(k)C(k) mod pk

efficiently to reduce the total cost of linear Hensel lifting from O(N5) to O(N4). The same

3 Michael Monagan

construction can be applied to the multivariate case. However in the multivariate case, the
solution of the diophantine equations that arise begins to dominate the cost. My student B.
Tuncer is looking for a way to allow us to efficiently update a diophantine solution.

3: Suppose a polynomial A(x, y, z) factors as B(x, y, z)×C(x, y, z). Suppose we factor three
univariate images A(x, α1, β1), A(x, α2, β2) and A(x, α3, β3) over Q and use Hensel lifting on
y to obtain

A(x, y, β1) = f1(x, y, β1)× f2(x, y, β1)
A(x, y, β2) = g1(x, y, β2)× g2(x, y, β2)
A(x, y, β3) = h1(x, y, β3)× h2(x, y, β3)

In general, we won’t know if B(x, y, β1) is f1 or f2. If, however, the monomials in B(x, y) and
C(x, y) are different then we can identify which factors here are the image of B(x, y, z) and
interpolate those together. If not, then our idea is the following. Apply Hensel lifting in z
once to obtain A(x, α, z) = B(x, α, z)×C(x, α, z). Then, with high probability B(x, α, β1) =
f1(x, α, β1) or f2(x, α, β1) but not both. Similarly B(x, α, β2) = g1(x, α, β1) or B(x, α, β2) =
g2(x, α, β1) but not both. Thus using one additional bivariate factorization enables us to
interpolate z. We get a dense interpolation method from this which enables us to parallelize
the algorithm. We seek a sparse interpolation method. Related work includes the Black Box
model of Kaltofen and Trager in [15] and Diaz and Kaltofen’s FoxBox implementation in [5].

It is very helpful to have good application problems to test algorithms with. Randomly
generated problems are not always good problems to use. Indeed one of my goals is to build
a database of real problems. One good problem is the following. Let Vn = [x1, x2, ..., xn]. Let
Cn be the n by n matrix whose rows are formed from Vn by shifting the variables cyclically.
For example

C4 =


x1 x2 x3 x4

x2 x3 x4 x1

x3 x4 x1 x2

x4 x1 x2 x3


Let Dn = det(Cn). So Dn is a polynomial in Z[x1, x2, ..., xn]. It is known (see Kra and
Simanca [25]) that Dn factors over Q(ω) into n linear factors where ω is a primitive n’th
root of unity. The computational problem is to compute and factor Dn over Q and Q(ω) for
as large an n as is possible. Using our fast multiplication in [23] we can compute D14 in 125s
but factoring it is much harder. Table 1 gives some timing data showing where we are at.

n Dn Q Q(ω)
12 2.6s 86500 terms 32.7s 60.7s
13 15.5s 400024 terms 8.5m > 10hrs

Table 1: CPU times for computing Dn and factoring Dn over Q and Q(ω) in Maple 17

4 Michael Monagan

3. Multivariate polynomial interpolation and
4. Parallel algorithms for polynomial GCD and Linear Algebra.

In current work, my student Matthew Gibson and I have developed a parallel library for
polynomial GCD computation in Z[x, y, ...]. We have parallelized Brown’s GCD algorithm
[2] using Cilk. Our software maps to multiple bivariate GCDs in Zp[x, y] which are computed
in parallel. We use machine 63 bits on a 64 bit machine. We have optimized the serial
bivariate GCD code achieving a speedup of a factor of 10 over Maple and Magma. For
Z[x, y] we are seeing a parallel speedup on of a factor of 15 on a 16 multi-core server for an
overall improvement of a factor of 150 over Maple and Magma. We would like to try a GPU
implementation as this could lead to a further 10-fold improvement. For this we would need
to implement univariate evaluation, interpolation and the Euclidean algorithm on a GPU.

Recent work on this includes the work of [12], Haque and Moreno Maza (2012) who
experimented with a parallel Euclidean algorithm for Zp[x] on a GPU. They showed that
quadratic O(d2) algorithms for polynomial multiplication and division and in Zp[x] were
faster than FFT based algorithms on a GPU up to degee 212 and for GCD up to degree 218.
We do not plan to parallelize GCD in Zp[x] but rather run multiple instances of Zp[x] in
parallel. Related work includes that of Emeliyanenko [8] (2013) and Stussak and Schenzel
[26] (2012) for computing resultants in Z[x, y] on a GPU. Emeliyanenko used a matrix based
approach. Stussak and Schenzel use the Euclidean algorithm which should be an order of
magnitude faster.

Structured Polynomial Interpolation

A long standing problem is Computer Algebra has been “How fast can we interpolate a
sparse polynomial in N variables of total degree D with T non-zero terms with integer
coefficients?” Related work includes the work done by Grigoriev and Lakshamn (1995) [11]
and Giesbrecht, Kaltofen and Lee (2003) [9], and others to determine the sparsest shift of
a univariate polynomial. That is, find α such that f(x − α) is sparse, and if such α exists,
find the coefficients of f(x− α). Here, motiviated by applications requiring interpolation, I
propose to work on what I call “structured” polynomial interpolation. I will explain.

In the summer of 2013 Manuel Kauers sent me a sequence of n × n matrices A in two
parameters w and z arising from a combinatorial setting. He sent me matrices for n =
32, 64, 128, 256. He wanted to compute and factor the characteristic polynomial C(x,w, z) =
xn + . . . of A(w, z). We were able to get Maple and Sage to compute the n = 32 case fairly
quickly using a classical approach (the division free approach of Berkowitz) but unable to
compute the n = 64 case in either system. I eventually did succeed using Maple on a machine
with more memory – it took 7 days.

It seemed to us that a modular approach should be faster and also more easily paral-
lelized. The approach would be to compute images C(x,w = αi, z = βj) modulo primes pk,
recover C(x,w, z) by interpolating w and z and applying Chinese remaindering. Each image
C(x, αi, βj) mod pk can be computed in O(n3) arithmetic operations in Zp using e.g. the
Hessenberg method (see Ch. 2 of Cohen [4]). Bounds for degw(C) and degz(C) can easily
be determined from A(w, z) by inspection. A bound for the largest integer coefficient of C
can also be determined from A(w, z) using Goldstein and Graham [10].

However, we noticed that each coefficient fi(w, z) of xi of the characteristic polynomial

5 Michael Monagan

has a lot of structure which, if intelligently exploited, can be used to greatly reduce the work
that our modular algorithm does. The coefficients fi(w, z) are of the form

fi(w, z) = wLizNi(z4 − 1)Migi(w
2, z4)

for non-negative integers Li, Ni and Mi. Some of this information e.g. that C(x,w, z) has
even powers in w and z can be obtained by inspecting the input matrix A. The rest we can
“discover” by picking a random point α ∈ Zp, interpolating C(x, α, z) and C(x,w, α) from
points [this costs O(n4)], then inspecting the coefficients of C(x, α, z) and C(x, y, α). Here
is some data for n = 64.

i Li Mi Ni degw(gi) degz(gi)
0 384 384 193 0 0
1 372 384 187 6 3

32 132 120 67 60 66

Since degw(C) = 384, degz(C) = 1152, max64
i=0 degw(gi) = 60 and max64

i=0 degz(gi) = 66, the
total reduction in the cost to interpolate w and z is a factor of 384/60× 1152/66 = 111. By
removing the factors of z4 − 1 we also reduce the length of the largest integer coefficient of
C(x,w, z) by a factor of 2.6 for a total reduction of a factor of 289. The time for my modular
implementation to compute C(x,w, z) is 49.1 seconds CPU and 15.1 seconds real time using
4 cores (we needed 4 primes).

The goal of this project is to try to automate our observations and build software that
“intelligently” interpolates coefficients of polynomials. We need to

• Decide what structure we can afford to look for.

• Analyze the overall probability of error in determining Li, Ni,Mi.

• Design how the algorithm will detect an incorrect assumption – at present we don’t.

• Design how to parallelize the algorithm – we presently parallelize at the level of primes
and implement the parallelization at the Unix command level by calling Maple (Sage)
on multiple inputs and communicating data via files.

I think this is a very good thesis topic for a student. There is some design, parallel pro-
gramming, and analysis involved. This idea can potentially be applied to many multivariate
interpolation problems, including determinants, resultants, rational function solutions of
linear systems, and polynomial GCD problems.

Impact

This research proposal covers core facilities in Computer Algebra Systems. It will find many
practical applications in science and engineering which involve multivariate polynomials,
algebraic numbers and matrices with parameters.

The focus on parallel algorithms, their design and implementation, will be of benefit
to students. For those who leave the field of Computer Algebra, the algorithm design and
parallel programming skills learned will be marketable.

6 Michael Monagan

References

[1] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynomial
interpolation. In Proceedings of STOC ’88, ACM Press, pages 301–309. 1988.

[2] W. S. Brown. On Euclid’s Algorithm and the Computation of Polynomial Greatest
Common Divisors. J. ACM, 18 (4), 478–504, 1971.

[3] L. Chen, M. Monagan. Solving Linear Systems of Equations Over Cyclotomic Field.
J. Symb. Cmpt. 45 (9) 902–917, 2010.

[4] H. Cohen. A Course in Computational Algebraic Number Theory. Graduate Texts in
Mathematics, Springer Verlag, 1993.

[5] A. Diaz and E. Kaltofen. FOXBOX: a system for manipulating symbolic objects in
black box representation. Proceedings of ISSAC ’98, ACM Press, pp. 30–37, 1998.

[6] Jean-Guillaume Dumas, Thierry Gautier et Jean-Louis Roch. Generic design of Chinese
remaindering schemes. Proceedings of PASCO ’10, pp. 26–34, ACM Press, 2010.

[7] J.G. Dumas, T. Gauthier, M. Giesbrecht, P. Giorgi, B. Hovenin, E. Kaltofen, D. Saun-
ders, W.J. Turner and G. Villard. LinBox: A Generic Library for Exact Linear Algebra.
Research Report No 2002-15, INRIA, Lyon, 2002.

[8] Emeliyanenko, P. Computing resultants on Graphics Processing Units: Towards GPU-
accelerated computer algebra. J. Parallel and Dist. Cmpt 73(11) 1495–1505, 2013.

[9] M. Giesbrecht, E. Kaltofen, W. Lee. Algorithms for Computing Sparsest Shifts of Poly-
nomials in Power, Chebyshev, and Pochhammer Bases. J. Symb. Cmpt. 36(3–4) 401–
424, 2003.

[10] A. J. Goldstein and R. L. Graham. A Hadamard-type bound on the coefficients of a
determinant of polynomials. SIAM Review 1 394–395, 1974.

[11] D. Y. Grigoriev, Y. N. Lakshman, Algorithms for computing sparse shifts for multivari-
ate polynomials. Proceedings of ISSAC 95, ACM Press, pp. 96-103, 1995.

[12] S.A. Haque, M. Moreno Maza. Plain Polynomial Arithmetic on GPU.
Proceedings of HPCS 2012, J. Physics: Conference Series 385 pp. 1–10, 2012.

[13] Mahdi Javadi and Michael Monagan. On Factorization of Multivariate Polynomials over
Algebraic Number and Function Fields. Proceedings of ISSAC ’09, pp. 199–206, ACM
Press, 2009.

[14] Mahdi Javadi and Michael Monagan. In-place Arithmetic for Univariate Polynomials
over an Algebraic Number Field. Proceedings of ASCM 2009, Math-for-Industry Lecture
Notes Series, 22, Kyushu University, pp. 330–341, 2009.

[15] E. Kaltofen and B. Trager. Computing with polynomials given by black boxes for their
evaluations: Greatest common divisors, factorization, separation of numerators and
denominators. J. Symb. Cmpt., 9, pp. 301–320, 1990.

7 Michael Monagan

[16] E. Kaltofen, W. Lee, and A. A. Lobo. Early termination in Ben-Or/Tiwari sparse
interpolation and a hybrid of Zippel’s algorithm. Proceedings of ISSAC ’00, ACM
Press, pp. 192–201, 2000.

[17] Xin Li, Marc Moreno Maza and Éric Schost. Fast arithmetic in triangular sets: From
theory to practice. J. Symb. Cmpt., 44(7): 891-907, 2009.

[18] Xin Li, Marc Moreno Maza, Raqeeb Rasheed, and Éric Schost. The modpn library:
Bringing fast polynomial arithmetic into MAPLE. J. Symb. Cmpt. 46(7): 841-858,
2011.

[19] A. Miola, D. Y. Y. Yun, Computational Aspects of Hensel-type Univariate Polynomial
Greatest Common Divisor Algorithms. Proc. EUROSAM ’74 (1974), pp. 46–54.

[20] M. B. Monagan. Probabilistic Algorithms for Resultants.
Proceedings of ISSAC ’2005, ACM Press, pp. 245–252, 2005.

[21] Michael Monagan and Roman Pearce. POLY: A new polynomial data structure for
Maple 17. To appear in the post conference proceedings of ASCM 2012, Springer
Verlag, 2014. Preprint: http://cecm.sfu.ca/CAG/papers/ascmMUL19.pdf

[22] Michael Monagan and Roman Pearce. POLY: A new polynomial data structure for
Maple 17. Communications in Computer Algebra 46(4), 164−167, 2012.

[23] Michael Monagan and Roman Pearce. Parallel Sparse Polyomial Multiplication using
Heaps. Proceedings of ISSAC ’09, ACM Press, pp. 263–269, 2009.

[24] Roman Pearce and Michael Monagan. Parallel Sparse Polynomial Division using Heaps.
Proceedings of PASCO ’2010, ACM Press, pp. 105–111, 2010.

[25] Irwin Cra and Santiago R. Simanca. On Circulant Matrices.
Notices of the American Math. Soc. 59(3) 368–377, March 2012.

[26] C. Stussak and P. Schenzel. Parallel computation of bivariate polynomial resultants on
Graphics Processing Units. Proceedings of Applied Parallel and Scientific Computing,
2010, Springer Verlang LNCS 7134, pp. 78–87, 2012.

[27] B. Trager. Algebraic Factoring and Rational Function Integration.
Proceedings of ISSAC ’76, ACM Press, pp 219–226, 1976.

[28] P. S. Wang. Factoring multivariate polynomials over algebraic number fields.
Math. Cmpt. 30 324–336, 1976.

[29] R. Zippel. Probabilistic Algorithms for Sparse Polynomials.
Proceedings of Eurosam 79’, Springer-Verlag LNCS, 72, 216-226, 1979.

[30] Lihong Zhi, Algebraic Factorization and GCD Computation.
Mathematics Mechanization and Applications, Academic Press, 325–342, 2000.

