
Applications of Computer Algebra – ACA 2022
Gebze-Istanbul, Turkey, | August 15-19, 2021
Session on “Session Title”

On computing isomorphisms between algebraic
number fields

Michael Monagan1 [mmonagan@sfu.ca]

1 Department of Mathematics, Simon Fraser University, Vancouver, Canada

Let K = Q(α1, α2, . . . , αk) be an algebraic number field. For example K = Q(
√
2,
√
3).

Then K is a vector space over Q. Let d = dim(K : Q). Without loss of generality we
assume Q(α1, . . . , αi) is a proper subfield of Q(α1, . . . , αi, αi+1) for 1 ≤ 1 < k.

Let c1, c2, . . . , ck be integers and let γ =
∑k

i=1 ci αi. For almost all ci we have K ' Q(γ).
In this work we want to compute the field isomorphism ϕ : K → Q(γ) as fast as possible.

Our motivation is the modular GCD algorithm of van Hoeij and Monagan from [3]. For two
polynomials A,B ∈ K[x] their algorithm computes G = gcd(A,B) modulo a sequence
of primes p1, p2, . . . , then applies the Chinese remainder theorem to compute G modulo m
where m is the product of primes, and then uses Wang’s rational number reconstruction from
[4] to recover the rational coefficients of G from their images modulo m. The speed of their
algorithm depends on the speed of arithmetic in K modulo a prime p.

How do we represent the elements of K and K mod p and how do we do arithmetic in K
and in K mod p? The approach taken by the computer algebra systems Pari and Maple is
to construct K as a sequence of quotients (see below) and use a recursive polynomial data
structure to represent the elements of K.

Set K0 = Q.

For i = 1 to k do

Letmi(zi) be the minimal polynomial for αi overKi−1 and let di = deg(mi, zi).

Set Ki = Ki−1[zi]/〈mi〉.

We have K ' Kk and d =
∏k

i=1 di. Also K is isomorphic to the quotient ring R =
Q[z1, . . . , zk]/I where I is the ideal 〈m(z1), . . . ,m(zk)〉.

One way to do arithmetic in R would be to represent elements of R as sparse multivariate
polynomials in Q[z1, z2, . . . , zk] and use Gröbner bases. We have {m1,m2, . . . ,mk} is a
Gröbner basis for I in lexicographical order with z1 < z2 < · · · < zk. However, this is
expensive as a multiplication in R will do many multivariate polynomial operations.

Pari represents multivariate polynomials recursively, that is, Pari thinks of a polynomial in
Q[z1, z2, . . . , zk] as a polynomial in Q[z1][z2] · · · [zk] and it uses a dense recursive polyno-
mial data structure so that it needs univariate polynomial arithmetic only. Inspired by Pari’s
representation, van Hoeij and Monagan [3] also used a dense recursive representation for
polynomials for their Maple implementation of the modular GCD algorithm in K[x]. For
example, the polynomial 7x2 + 5z22 + 3z21 in Q[z1][z2][x] is stored as the Maple list of lists
of lists of integers [[[0,0,3],0,[5]],0,[[7]]].

We have observed that when k > 1 and m1 has low degree, which is often the case practice,
it is faster (typically 5 to 10 times faster) to multiply in Q(γ) mod p than to multiply in K
mod p. One reason for this is that to multiply in K3 mod p we do many multiplications in
K2 mod p, each of which does many multiplications in K1, each of which requires memory
to be allocated for the intermediate product and several function calls. This overhead is
minimized when k = 1. In our talk we will present timing data to measure the overhead in
Pari, Maple and Magma. Thus our hypothesis: to compute gcd(A,B) mod p, for deg(A, x)
and deg(B, x) sufficiently large, it should be faster if we first compute ϕ mod p and map the
GCD computation from K mod p into Q(γ) mod p.

How do we compute the isomorphism ϕ : K → Q(γ)? In our talk we present three methods
(sketched below) to compute ϕ. The first method uses Gröbner bases, the second uses Linear
Algebra, and the third uses iterated resultants. We have implemented the second method in C
modulo a prime p. Our C implementation uses a dense recursive representation for elements
of K mod p and supports primes up to 63 bits. We present timings for computing GCDs in
K[x] mod p comparing Pari, Magma, and Maple with our C code.

Method 1: Gröbner Bases.

Let γ =
∑k

i=1 cizi and let m(z) be the minimal polynomial for γ over Q. Let

F = [m1(z1), . . . ,mk(zk), z − γ]

and let G be the reduced Gröbner basis for F in lexicographical order with z < z1 < · · · <
zk. For almost all ci we have G ∩ Q[z] = {m(z)} and the remaining elements of G give us
ϕ(zi). We give an example to illustrate.

Example 1. For K = Q(
√
2,
√
3) we have m1(z1) = z21 − 2 and m2(z2) = z22 − 3 and

a basis for K over Q is [1, z1, z2, z1z2]. For c1 = c2 = 1 we have γ = z1 + z2 and
F = [z21 − 2, z22 − 3, z − z1 − z2]. We obtain the Gröbner basis

G = [z4 − 10z2 + 1, z1 +
9
2z −

1
2z

3, z2 − 11
2 z +

1
2z

3].

Thus m(z) = z4 − 10z2 + 1, ϕ(z1) = − 9
2z + 1

2z
3 and ϕ(z2) = 11

2 z −
1
2z

3. We have
ϕ(1) = 1 and we compute ϕ(z1z2) = ϕ(z1)ϕ(z2).

Notice that F is also a Gröbner basis for the ideal generated by F in lexicographical order
with z1 < z2 < · · · < zk < z because the leading monomials of the polynomials in F are
zd1
1 , z

d2
2 , . . . , z

dk

k and z which are all relatively prime! Therefore, we may computeG from F
using FGLM, the Gröbner basis conversion algorithm of Faugere, Gianni, Lazard and Mora
[2]. The FGLM algorithm does O(kd3) arithmetic operations in Q.

Method 2: Linear Algebra.

The number field K = Q(α1, . . . , αk) is a vector space over Q. Let d = dim(K : Q) and let
m(z) = zd +

∑d−1
i=0 xiz

i be the minimal polynomial for γ over Q for xi unknown. Equating
m(γ) = 0 we obtain a linear system

∑d−1
i=0 xiγ

i = −γd. In matrix form we have Ax = b
where A = [1 | γ | γ2 | . . . | γd−1] and b = −γd. We construct A then invert A and obtain
x from x = A−1b. The matrix A−1 is the mapping ϕ : K → Q(γ) thus A gives us ϕ−1.
Method 2 does O(d3) arithmetic operations in Q.

Method 3: Iterated Resultants.

Let γ =
∑k

i=1 cizi. Starting with the polynomial z−γ we use the subresultant algorithm (see
[4]) to first use mk to eliminate zk then to use mk−1 to eliminate zk−1, etc., until we have
eliminated all zi and we obtain the minimal polynomial m(z). In a second stage we succes-
sively obtain ϕ(z1), ϕ(z2), ..., ϕ(zk) using the penultimate polynomials in the subresultant
remainder sequences which are linear for almost all ci.

Example 1 (continued). First we apply the subresultant algorithm to z− z1 − z2 and z22 − 2
to eliminate z2. We obtain 3 polynomials z22 − 2, z − z1 − z2 (which is linear in z2) and
−2zz1 + z2 + 1. Next we apply the subresultant algorithm to −2zz1 + z2 + 1 and z21 − 3 to
eliminate z1. We obtain 3 polynomials z21 − 3, −2zz1 + z2 + 1 (which is linear in z1) and
z4 − 10z2 + 1 (the minimal polynomial for γ).

Now we compute ϕ(z1) by solving −2zz1 + z2 + 1 = 0 for z1 mod m(z). We must invert
−2z in Q[z]/〈m(z)〉 using he Euclidean algorithm. We then solve z−ϕ(z1)− z2 = 0 for z2
to determine ϕ(z2). Finally we compute ϕ(z1z2) = ϕ(z1)ϕ(z2).

Method 3 also does O(d3) arithmetic operations in Q. But unlike methods 1 and 2 which
solve linear systems of size d × d, it only does polynomial arithmetic. We are currently
investigating whether we can accelerate method 3.

Keywords
Grobner Bases, Algebraic number fields, Polynomial GCD, Field isomorphisms, Resultants

References
[1] B. BUCHBERGER, G.E. COLLINS, R. LOOS, R. ALBRECHT. Computer Algebra. Springer,
1983.
[2] J.C. FAUGERE, P. GIANNI, D. LAZARD, T. MORA. Efficient Computation of Zero-
dimensional Gröbner Bases by Change of Ordering. J. Symb. Comp. 16(4), 329–344 (1993).
[3] M. VAN HOEIJ, M. MONAGAN., A Modular GCD Algorithm over Number Fields Pre-
sented with Multiple Field Extensions. In Proceedings of ISSAC ’02, 109–116. ACM, 2002.
[4] P. WANG. A p-adic algorithm for univariate partial fractions. In Proceedings of SYMSAC
’81, 212–217, ACM, 1981.

