Polynomial Interpolation

Michael Monagan

Department of Mathematics,
Simon Fraser University

Computers and Mathematics day, August 12, 2010

This is a joint work with Mahdi Javadi

Outline

The black box model
The sparse interpolation problem
Previous work

Our parallel algorithm

vV v.v. v Y

Benchmarks and current work

The Black-Box model.

Let K is a ring e.g. Z,R, GF(p).
Let f be a polynomial in K[xq, ..., xs] given to us as a black-box.

(a1y...,an) € K" f(ag,...,an) € K

» In this model all we may do is evaluate f at points in K.
» We call evaluations of f probes to the black-box.

» We want algorithms that minimize the number of probes.

Example of the black-box model K = Q.
> A := Matrix([[x1,x2,x3], [x2,x1,x2], [x3,x2,x1]]);
X1 X2 X3
A= X2 X1 X2
x5 % x

> f := det(h);
. 3 2 2 2
=X — 2Xx1% + 2X3%5 — X3X1

> factor(f);
(X1 —X3) (X12+X1X3 —2X22)

f := proc(xl::rational, x2::rational, x3::rational) :: rational;
local A; A := Array(1..3,1..3);
Al1,1] := x1; A[1,2] := x2; A[1,3] := x3;
A[2,1] := x2; A[2,2] := x1; A[2,3] := x2;
A[3,1] := x3; A[3,2] := x2; A[3,3] := x1;

LinearAlgebra[Determinant] (4) ;
end:

The Sparse Interpolation Problem.

Let f = Z,-t:1 ¢iM; where ¢; € K and M; are monomials in xq, ...

Assume we are given d > deg f, and a term bound T > t.
In the black-box model, can we

1 Testif f=07
2 Determine ¢; and M; ?

3 Determine the factors of f ?

» Xn-

The Sparse Interpolation Problem.

Let f = Z,-t:1 ¢iM; where ¢; € K and M; are monomials in xq, ...

Assume we are given d > deg f, and a term bound T > t.
In the black-box model, can we

1 Testif f=07
2 Determine ¢; and M; ?
3 Determine the factors of f ?

Yes, interpolate f using e.g. Newton interpolation.
If |K| > d we can interpolate f with (d + 1) probes.

What if f =1+ x{ +x§ + ... +x7.
This polynomial is sparse — it has only t = n+ 1 terms.

Sparse Interpolation Problem
Can we interpolate f in polynomial time in n,d, T ?

» Xn-

Previous work.

1978 Schwartz’ zero test.

1979 Zippel's probabilistic sparse interpolation.

1988 Ben-Or/Tiwari's deterministic sparse interpolation.
1999 Huang and Rao's parallel algorithm.

2000 Kaltofen, Lee and Lobo's racing algorithm.

2006 Giesbrecht, Labahn and Lee's numerical method.

Testing if f = 0.

The Schwartz Lemma (Jack Schwartz, 1979)
Let f € K[x1,...,x,] and d > deg f.

Pick aq, ..., a, from S C K at random.
If £ 0 then

Prob(f(aq,....,apn) =0) < —.

Example: Consider a prime p > 23° with S = K = Z,,.
If f(ai,...,n) = 0 then

d
Prob(f =0) > 1 7.

Zippel's probabilistic algorithm (1979).

Suppose p is a prime, f € Z,[x, y, z] and we know

deg, (f),deg,(f),deg,(f) < 15.

Pick o € Z,, at random and interpolate, recursively,
f(x,y,a) =Xy + - x°y* + - x%°

To interpolate z using Newton we need deg,(f) = 15 more bivariate
images each of which requires 16 x 16 = 256 points.

Zippel's observation: If p is large and « is chosen at random, then

f(x,y,2) = A(2)x°y + B(2)x3y* + C(2)x5y® w.h.p.

Zippel's probabilistic algorithm (1979).
Suppose p is a prime, f € Z,[x, y, z] and we know
deg,(f), deg, (f), deg,(f) < 15.

Pick o € Z,, at random and interpolate, recursively,
f,y,0) =Xy + -y +-x%°

To interpolate z using Newton we need deg,(f) = 15 more bivariate
images each of which requires 16 x 16 = 256 points.

Zippel's observation: If p is large and « is chosen at random, then

f(x,y,2) = A(2)x°y + B(2)x°y* + C(2)x°y° w.h.p.
Zippel's idea: Get the next bivariate image for f(x, y, 3) by picking
0, a1, by, ax, b, az, bz at random and solving, for A, B, C,

f(al, by, ﬁ) = Aaﬁ’bl + Ba?bf + Chy
F(an, bz, 8) = Aadby + Ba3bd + Cbs
f(as, bs, 3) = Aaybs + Ba3bi + Cbs

This linear system is non-singular w.h.p. = 3 probes instead of 256.

Zippel's probabilistic algorithm (1979).

Suppose p is a prime, f € Z,[x, y, z] and we know

deg, (f),deg,(f),deg,(f) < 15.

Pick o € Z,, at random and interpolate, recursively,
f(x,y,a) =Xy + - x°y* + - x%°

To interpolate z using Newton we need deg,(f) = 15 more bivariate
images each of which requires 16 x 16 = 256 points.

Zippel's observation: If p is large and « is chosen at random, then

f(x,y,2) = A(2)x°y + B(2)x°y* + C(2)x°y° w.h.p.
Zippel's idea: Get the next bivariate image for f(x, y, 3) by picking
0, a1, by, ax, b, az, bz at random and solving, for A, B, C,

f(al, by, ﬁ) = Aaﬁ’bl + Ba?bf + Chy
F(an, bz, 8) = Aadby + Ba3bd + Cbs
f(as, bs, 3) = Aaybs + Ba3bi + Cbs

This linear system is non-singular w.h.p. = 3 probes instead of 256.

» Zippel's algorithm is probabilistic and does O(ndt) probes.

Ben-Or and Tiwari's algorithm (1988).

Let f = Z;t:1 ciM; where ¢; € 7 and M; = x7 x> .. xn.

Input T > t.

Step1 Fori=0...2T —1 compute v; = f(2/,3". 5" ... pl).

Step 2 Compute the linear generator A(z) for the sequence
Vo, V1, ..., VaT—1 using the Berlekamp/Massey algorithm.
t

Theorem: A(z) = H (z— M;(2,3,5,...,pn))-
i=1

Step 3 Compute the integer roots of A(z): my,..., m;.
Step 4 Divide m; by p; to determine deg,,(M;) hence M,;.

Step 5 Solve (a transposed Vandermode system) for the coefficients c;.

The Ben-Or/Tiwari algorithm contd.

» Ben-Or/Tiwari is deterministic and does 2T probes.

» But the integers £(2/,37,5/, ..., p') are as large as p2'?, which can

be very big. E.g. if n=10,d = 50, = 100, p2’ > 14,000 digits!

» Worse, Kaltofen and Lobo observed that rational numbers in the
Berlekamp-Massey algorithm get t = 100 times larger still !!

The Ben-Or/Tiwari algorithm contd.

» Ben-Or/Tiwari is deterministic and does 2T probes.

» But the integers £(2/,37,5/, ..., p') are as large as p2'?, which can

be very big. E.g. if n=10,d = 50, = 100, p2’ > 14,000 digits!

» Worse, Kaltofen and Lobo observed that rational numbers in the
Berlekamp-Massey algorithm get t = 100 times larger still !!

Solution: Run Ben-Or/Tiwari modulo a prime p satisfying

p > max M;(2,3,5, ..., p,) < pl.

Still n = 10,d = 50 = p > 107,

Huang and Rao's algorithm for K = GF(q) (1999).

Idea: Replace the primes 2,3,5,... in Ben-Or/Tiwari by irreducible
polynomials y — a1,y — a», ... for a; € GF(q).

How do we evaluate the back box at polyomials
fF((y—a) . (y—a),....(y —ay)), fori=0,1,...,2T =17

Huang and Rao's algorithm for K = GF(q) (1999).

Idea: Replace the primes 2,3,5,... in Ben-Or/Tiwari by irreducible
polynomials y — a1,y — a», ... for a; € GF(q).

How do we evaluate the back box at polyomials
fF((y—a) . (y—a),....(y —ay)), fori=0,1,...,2T =17

Solution: interpolate f((y — a1)’, (y — a2)’,...,(y — a,)") € GF(q)[y]
from di + 1 values for y in GF(q).

» Requires g > 8d°t°.
» Does O(dt?) probes.
> Needs to factor A(x,y) € GF(q)[x, y].

Kaltofen, Lee and Lobo’s algorithm for GF(q).
In 2000 Kaltofen, Lee and Lobo presented a hybrid of Zippel's algorithm
and the Ben-Or/Tiwari algorithm.
Their algorithm modifies Zippel's algorithm. Consider
f(x,y,z) = 72°x"y® 4 (32° + B)xy* + 7z'1x

» For univariate interpolation, they race Newton's interpolation with
univariate Ben-Or/Tiwari using same evaluation points.
» This reduces the number of probes from O(ndt) to O(nt).

» But this sequentializes the algorithm!

Comparison Chart

For applications where we can choose the prime p:

Alg. # Probes | Deterministic? | Parallel? Prime
Ben-Or/Tiwari 1088 O(t) Las Vegas Yes p> p,?l
Huang/Rao 1990 O(dt?) Las Vegas Yes p > 8d*t?
Zippel 1979 O(ndt) Monte-Carlo Some p> nt
Kaltofen et. al. 2000 | O(nt) Monte-Carlo Less p> nt
Javadi/Monagan 2010 | O(nt) Monte-Carlo Yes! p> (n+ d)t“2

Three problems:

» Medium: n=10,d = 20, t = 10%.
» Big: n=15,d = 40,t = 10*.
> Very Big: n=20,d =100, t = 10°.

Alg. Prime Medium | Big | Very Big
Ben-Or/Tiwari p>pl 2% 2223 2015
Huang/Rao p > 8d%t? 2% 24 256
Zippel p>> nt 210 217 224
Kaltofen et. al. p>> nt 210 27 224
Javadi/Monagan | p > (n+ d)t? 218 232 2%

Our New Algorithm: The ldea

1. Choose non-zero aj, ..., a, at random from Zp.
2. Evaluate f(aj,...,al,...,a}) for i =0...2T — 1 and compute Ag(2) € Zp[z].
3. Find the roots of Ag(z) : r1, ..., r: using Rabin’s algorithm.

We have {ry,...,rt} ={my,...,m:} where mj = Mij(a1, ..., an).

. . d; d;
4. To determine the monomials M;(xy, ..., xn) = x;"" - -+ x5

Our New Algorithm: The ldea

1. Choose non-zero aj, ..., a, at random from Zp.
2. Evaluate f(aj,...,al,...,a}) for i =0...2T — 1 and compute Ag(2) € Zp[z].
3. Find the roots of Ag(z) : r1, ..., r: using Rabin’s algorithm.

We have {ry,...,rt} ={my,...,m:} where mj = Mij(a1, ..., an).
4. To determine the monomials M;(xq, ..., xn) = xf"l cow xCim,
For each x; do the following in parallel:

4.1 Choose f3; # «; at random from Zp.
4.2 Evaluate f(of, ..., Bis--ns o) for i =0...2t — 1 and compute Aj(z).
Let 7, ..., denote the roots of Aj(z) and m; = Mj(c,...,05),...,cn).
We have {r,..., 7t} = {y,...,m:}. Observe:
mj Bj \d; _ Bj \d; Bj\d::
= (D) = m= () m = M) D m) =o.
mj a;j o o
43 Fori=1...tdo
431 Fors=0...d doif /\j((%)S r;) =0 then dj = s w.h.p.
J

Our New Algorithm (contd.)

We construct the following bipartite graph. r; is connected to 7; with the weight e iff

- Bj
nj = ri(5)"

This graph has a unique perfect matching

7 o 3 7y rs
2 1 2 4 0
n 7 3 i s

which tells us the degree of all monomials in x;.

Our New Algorithm.

Require: A polynomial f € Z,[xi,...,x,] input as a black box.
Require: A degree bound d > deg(f) and a term bound T > t.

Choose ay, ..., an from Z,\{0} at random.

Choose (1, ..., 3, from Z,\{0} at random s.t. order(Bx/ax) > d.

for k from O to n in parallel do
k=0: Compute Ao(x) from f(af, ..., ci’,...ah) for 0 < i< 2T — 1.
k>0: Compute Agr1(x) from f(ad,..., Bk, ..., ah) for 0 < i< 2T —1.

end for

Set t = max"] deg Ai(z). If deg(A;) < t return FAIL.

Compute {r,..., r:} the set of distinct roots of A;(z).

for k from 1 to n in parallel do
Construct the bi-partite graph Gy as just described.
If Gx does not have a unique perfect matching return FAIL
else we have determined deg, (M;) for 1 </ <t.

: end for

: Solve for the unknown coefficients ¢; and let g = ZLI aM; .
: Check if g = f: choose ay,...,a, from Z, at random.

: If g(a1,...,an) = f(a1,...,an) return g else return FAIL.

Our New Algorithm

Require: A polynomial f € Z,[xi,...,x,] input as a black box.
Require: A degree bound d > deg(f) and a term bound T > t.

Choose ay, ..., an from Z,\{0} at random.
Choose (1, ..., 3, from Z,\{0} at random s.t. order(Bx/ax) > d.
for k from O to n in parallel do
k=0: Compute Ao(x) from f(af,... ;... af) for 0 < i< 2T — 1.
k>0: Compute Axi1(x) from f(ad,..., B ..., ah) for 0 < i< 2T — 1.
end for
Set t = max"] deg Ai(z). If deg(A;) < t return FAIL.
Compute {r,..., r:} the set of distinct roots of A;(z).
for k from 1 to n in parallel do
Construct the bi-partite graph Gy as just described.
If Gx does not have a unique perfect matching return FAIL
else we have determined deg, (M;) for 1 </ <t.

: end for

: Solve for the unknown coefficients ¢; and let g = ZLI aM; .
: Check if g = f: choose ay,...,a, from Z, at random.

: If g(a1,...,an) = f(a1,...,an) return g else return FAIL.

Our New Algorithm

Require: A polynomial f € Z,[xi,...,x,] input as a black box.
Require: A degree bound d > deg(f) and a term bound T > t.

Choose ay, ..., an from Z,\{0} at random.
Choose (1, ..., 3, from Z,\{0} at random s.t. order(Bx/ax) > d.
for k from O to n in parallel do
k=0: Compute Ao(x) from f(af, ..., ci’,...ah) for 0 < i< 2T — 1.
k>0: Compute Agr1(x) from f(ad,..., Bk, ..., ah) for 0 < i< 2T —1.
end for
Set t = max"} deg A\i(2). If deg(A;) < t return FAIL.
Compute {r, ..., r:} the set of distinct roots of A;(z).
for k from 1 to n in parallel do
Construct the bi-partite graph Gy as just described.
If Gx does not have a unique perfect matching return FAIL
else we have determined deg, (M;) for 1 </ <t.

: end for

: Solve for the unknown coefficients ¢; and let g = ZLI aM; .
: Check if g = f: choose ay,...,a, from Z, at random.

: If g(a1,...,an) = f(a1,...,an) return g else return FAIL.

Our New Algorithm

Require: A polynomial f € Z,[xi,...,x,] input as a black box.
Require: A degree bound d > deg(f) and a term bound T > t.

Choose ay, ..., an from Z,\{0} at random.
Choose (1, ..., 3, from Z,\{0} at random s.t. order(Bx/ax) > d.
for k from O to n in parallel do
k=0: Compute Ao(x) from f(af, ..., ci’,...ah) for 0 < i< 2T — 1.
k>0: Compute Agr1(x) from f(ad,..., Bk, ..., ah) for 0 < i< 2T —1.
end for
Set t = max"] deg Ai(z). If deg(A;) < t return FAIL.
Compute {r,..., r:} the set of distinct roots of A;(z).
for k from 1 to n in parallel do
Construct the bi-partite graph Gy as just described.
If Gi does not have a unique perfect matching return FAIL
else we have determined deg, (M;) for 1 </ <t.

: end for

: Solve for the unknown coefficients ¢; and let g = ZLI aM; .
: Check if g = f: choose ay,...,a, from Z, at random.

: If g(a1,...,an) = f(a1,...,an) return g else return FAIL.

Our New Algorithm

Require: A polynomial f € Z,[xi,...,x,] input as a black box.
Require: A degree bound d > deg(f) and a term bound T > t.

Choose ay, ..., an from Z,\{0} at random.
Choose (1, ..., 3, from Z,\{0} at random s.t. order(Bx/ax) > d.
for k from O to n in parallel do
k=0: Compute Ao(x) from f(af, ..., ci’,...ah) for 0 < i< 2T — 1.
k>0: Compute Agr1(x) from f(ad,..., Bk, ..., ah) for 0 < i< 2T —1.
end for
Set t = max"] deg Ai(z). If deg(A;) < t return FAIL.
Compute {r,..., r:} the set of distinct roots of A;(z).
for k from 1 to n in parallel do
Construct the bi-partite graph Gy as just described.
If Gx does not have a unique perfect matching return FAIL
else we have determined deg, (M;) for 1 </ <t.

: end for

. Solve for the unknown coefficients ¢; and let g = Zle cM; .
: Check if g = f: choose ay,...,a, from Z, at random.

: If g(a1,...,an) = f(a1,...,an) return g else return FAIL.

Our New Algorithm

Require: A polynomial f € Z,[xi,...,x,] input as a black box.
Require: A degree bound d > deg(f) and a term bound T > t.

Choose ay, ..., an from Z,\{0} at random.
Choose (1, ..., 3, from Z,\{0} at random s.t. order(Bx/ax) > d.
for k from O to n in parallel do
k=0: Compute Ao(x) from f(af, ..., ci’,...ah) for 0 < i< 2T — 1.
k>0: Compute Agr1(x) from f(ad,..., Bk, ..., ah) for 0 < i< 2T —1.
end for
Set t = max"] deg Ai(z). If deg(A;) < t return FAIL.
Compute {r,..., r:} the set of distinct roots of A;(z).
for k from 1 to n in parallel do
Construct the bi-partite graph Gy as just described.
If Gi does not have a unique perfect matching return FAIL
else we have determined deg, (M;) for 1 </ <t.

: end for

: Solve for the unknown coefficients ¢; and let g = ZLI aM; .
: Check if g = f: choose ay,...,a, from Z, at random.

: If g(a1,...,an) = f(a1,...,an) return g else return FAIL.

Algorithm failure probability

Theorem 1: For random non-zero au, . ..,an € Zp, the probability that two or
. . t d
more monomials M; evaluate to the same value is < (2) =1
p—
Theorem 2: If deg(/Ao) = deg(A;) = t, then the probability that we will not be
2.2
t
able to uniquely compute the degrees in x; is at most

4p(p—1)

Algorithm failure probability

Theorem 1: For random non-zero au, . ..,an € Zp, the probability that two or
d

. . t
more monomials M; evaluate to the same value is < (2) =1
p—

Theorem 2: If deg(/Ao) = deg(A;) = t, then the probability that we will not be
2,2
t
able to uniquely compute the degrees in x; is at most ——

4p(p—1)

Proof of Theorem 1: Consider

1<i<j<t
Observe that A(az, ..., an) = 0 iff two monomial evaluations collide.

Applying the Schwartz lemma, since deg(M;) < d we have

Prob(A(aq, . ..,as) =0) <

Optimizations

Theorem 3 : The algorithm makes 2(n+ 1) T probes,
does O((n+ 1)t2 + log(p)t? + ndt) other work, and
(n+1)d*t?
2¢(p—1) -

succeeds with probability at least 1 —

Optimizations

Theorem 3 : The algorithm makes 2(n+ 1) T probes,

does O((n+ 1)t2 + log(p)t? + ndt) other work, and

. . - (n«(»l)dzt2
succeeds with probability at least 1 30(p—1) -

> Pick ps.t. p=2g+ 1 with g prime to maximize ¢(p — 1).

» To compute the degrees of the monomials in the last variable x,, we
do not need to do any more probes to the black box. We have

, i)
m; = a‘f’l X e X anill) X ag”’.

> When determining the degree of M; in x;, stop when the first s
gives a root — it's the right degree w.h.p.

Optimizations

Theorem 3 : The algorithm makes 2(n+ 1) T probes,

does O((n+ 1)t2 + log(p)t? + ndt) other work, and

. . - (n«(»l)dzt2
succeeds with probability at least 1 30(p—1) -

> Pick ps.t. p=2g+ 1 with g prime to maximize ¢(p — 1).
» To compute the degrees of the monomials in the last variable x,, we
do not need to do any more probes to the black box. We have

, i)
m; = a‘f’l X e X anill) X ag”’.

> When determining the degree of M; in x;, stop when the first s
gives a root — it's the right degree w.h.p.

Theorem 3 : The algorithm makes 2nT probes,

does O(nt? + log(p)t? + dt?) other work, and
(nt+d*)t?

succeeds with probability at least 1 — 1
P

Benchmarks

Random polynomials in n = 12 variables with approximately t = 2 terms of
total degree 30 using T =t and d = 30.

i t New Algorithm Zippel ProtoBox
Time (4 cores) | Probes Time Probes Probes
4 15 0.00 (0.00) 360 0.20 10230 470
5 32 0.02 (0.01) 768 0.54 18879 962
6 63 0.04 (0.02) 1512 1.79 36735 1856
7 127 0.15 (0.05) 3048 6.10 69595 3647
8 255 0.54 (0.17) 6120 22.17 134664 7055
9 507 2.01 (0.60) 12168 83.44 259594 13440
10 1019 7.87 (2.33) 24456 316.23 498945 26077
11 2041 31.0 (9.16) 48984 1195.13 952351 DNF
12 | 4074 122.3 (35.9) 97776 4575.83 | 1841795 DNF
13 | 8139 484.6 (141.) 195336 | >10000 - DNF

Timings are in CPU seconds on an Intel Corei7.
The parallel implementation was done in Cilk.

Current work

i t 1 core 4 cores
time roots solve probes | time1 time 2 speedup
8 255 0.54 0.05 0.00 0.41 0.18 0.17 (3x)
9 507 2.02 0.18 0.02 1.48 0.67 0.60 (3.02x)
10 | 1019 | 7.94 0.65 0.08 5.76 2.58 2.33 (3.08x)
11 | 2041 31.3 2.47 0.32 22.7 9.94 9.16 (3.15x)
12 | 4074 | 122.3 9.24 1.26 90.0 38.9 35.9 (3.14x)
13 | 8139 | 484.6 34.7 5.02 357.3 152.5 141.5 (3.17x)
Amdahl’s law: Speedup < TL
Tot—Seq + Seq
#£cores

For i = 13 this gives 3.21 for 4 cores and 6.31 for 12 cores.

Current work

i t 1 core 4 cores
time roots solve probes | time1 time 2 speedup
8 255 0.54 0.05 0.00 0.41 0.18 0.17 (3x)
9 507 2.02 0.18 0.02 1.48 0.67 0.60 (3.02x)
10 | 1019 | 7.94 0.65 0.08 5.76 2.58 2.33 (3.08x)
11 | 2041 31.3 2.47 0.32 22.7 9.94 9.16 (3.15x)
12 | 4074 | 122.3 9.24 1.26 90.0 38.9 35.9 (3.14x)
13 | 8139 | 484.6 34.7 5.02 357.3 152.5 141.5 (3.17x)
Amdahl’s law: Speedup < TL.
ot—Seq + Seq
#£cores

For i = 13 this gives 3.21 for 4 cores and 6.31 for 12 cores.

We are currently implementing fast arithmetic in Z,[x] for 31 and 63 bit

primes to speed up the O(t?log(p)) root finding step which is the
sequential bottleneck, and also to handle large values of t.

For i = 13 this would give 3.89 for 4 cores and 9.95 for 12 cores.

Giesbrecht, Labahn and Lee's numerical method.

A modification of Ben-Or/Tiwari for polynomials with numerical coefficients.
Idea: evaluate at powers of primitive elements in C of relatively prime order.

Pick wi,...,w, of order qi,...,qn s.t. g; > d, gcd(qj, g) = 1.

Evaluate f(wj,...,w}), for i =0,1,...,2T — 1 and compute the roots
mi, ..., me of A(x) numerically. We have

P p—1
d: d: d:, diq 4+ d,
mi = Mi(wg,...,wn) = W X wy? X - X wpt=w ot an "
where w has order g1 - g2 - - - g». Now take logarithms to the base w:
= log, m = 22dy -+ 21d; ... 4 221,
Ew Mi = "g~din q U an in

Round log,,(m;) and solve this modulo g; to get d; ;.

Giesbrecht, Labahn and Lee's numerical method.

A modification of Ben-Or/Tiwari for polynomials with numerical coefficients.
Idea: evaluate at powers of primitive elements in C of relatively prime order.

Pick wi,...,w, of order qi,...,qn s.t. g; > d, gcd(qj, g) = 1.

Evaluate f(wj,...,w}), for i =0,1,...,2T — 1 and compute the roots
mi, ..., me of A(x) numerically. We have
P— p—1
di d d; =gyt =y,
mi = Mi(wg,...,wn) = W X wy? X - X wpt=w ot an "

where w has order g1 - g2 - - - g». Now take logarithms to the base w:
= log, m; = pTzldi1+"'+pT?1dU+"'+pTzldin
Round log,,(m;) and solve this modulo g; to get d; ;.
For applications where we can pick p, this can work in Z, as follows:

> Pick p=¢qg1-q2---qn+1s.t. gi > d and gcd(gi, qj) = 1 until p is prime.
» The discrete log is efficient if we choose p — 1 with no large prime factors.

> O(T) probes but requires p > (d + 1)" which may be big.

Thank you.

