
Efficiency Problems in the History of Maple

Michael Monagan

Simon Fraser University

History of Computer Algebra
ACA 2025

Michael Monagan 1 / 22



Early design goals of Maple

The Design of Maple: a compact, portable, and powerful Computer Algebra System.
[1] EUROCAL ’83, London, England, March 1983.

Design a programming language that is good enough to implement most algebraic algorithms. The
programming language was called Maple. Success!! Almost everyone (students and faculty) who was
working on the Maple project at Waterloo in the 1980s was implementing algorithms in the Maple
language. This resulted in a much faster development than would be possible if we had to implement
algorithms in a systems language like C or Lisp. In July 1984 we drove to the Macsyma User’s
conference in Schenectady, New York, to show off Maple.

On the Design and Performance of the Maple System.
[2] Proceedings of the 1984 Macsyma User’s Conference, pp. 189–220, 1984.

We were faster than Macsyma on a variety of tasks, at least on our benchmarks.
However, Maple really wasn’t that efficient.
Six efficiency problems.

Michael Monagan 2 / 22



1: Evaluation.

Maple

> f := x+2*y+x*ln(x);

f := x + 2 y + x ln(x)

> x := 1;

x := 1

> f;

1 + 2 y

Macsyma

(%i1) f : x+2*y+x*log(x);

(%o1) 2 y + x log(x) + x

(%i2) x : 1;

(%o2) 1

(%i3) f;

(%o3) 2 y + x log(x) + x

(%i4) ev(f);

(%o4) 2 y + 1

The evaluation model that Maple uses is advertised as a very desirable feature.
Who got this right?

Michael Monagan 3 / 22



1: Evaluation.

> NumTermsInx := proc(f,x) local g,c,n,i;

> if type(f,‘+‘) then g := [op(f)]; else g := [f]; fi;

> c := 0;

> n := nops(g);

> for i to n do if has(g[i],x) then c := c+1; fi; od;

> return c;

> end:

> f := x^3-3*x^2*y-3*y^2+5;

f := x3 − 3x2y − 3y 2 + 5

> NumTermsInx(f,y);

2

If f has n terms in m variables, the evaluation cost of g[i] is O(mn). Total is O(mn2)!!

For Maple 4.0 I changed evaluation of local variables to be 1 level like parameters but globals still used
full evaluation. No users complained. 10% gain!

Michael Monagan 4 / 22



2: A very bad hash function

V3 =

 1 x1 x21
1 x2 x22
1 x3 x23

 det(V3) = −x21 x2 + x21 x3 + x1x
2
2 − x1x

2
3 − x22 x3 + x2x

2
3 .

In general det(Vn) has n! terms.
I noticed that computing det(V8) in Maple 3.3 was slow. Why?

Michael Monagan 5 / 22



2: Maple’s unique representation model for algebraic expressions

Maple maintains a large hash table of all subexpressions so they are stored once. How?

> m1 := x*y^2*z^3; m1 = PROD z 3 y 2 x 1

> m2 := z^3*y^2*x; m2 = PROD x 1 y 2 z 3

The hash function must be commutative on x1, y2, z3 so that hash(m2) = hash(m1).

> m3 := x^3*y^2*z; m3 = PROD x 3 y 2 z 1

Since m1 6= m3 we want hash(m3) 6= hash(m1).
The blunder horribilis: hash was commutative on x , 1, y , 2, z , 3 so hash(m1) = hash(m3)!

It was easy for me to fix the problem. But how could this happen and why is it a disaster?

Michael Monagan 6 / 22



2: Maple’s unique representation model for algebraic expressions

Maple maintains a large hash table of all subexpressions so they are stored once. How?

> m1 := x*y^2*z^3; m1 = PROD z 3 y 2 x 1

> m2 := z^3*y^2*x; m2 = PROD x 1 y 2 z 3

The hash function must be commutative on x1, y2, z3 so that hash(m2) = hash(m1).

> m3 := x^3*y^2*z; m3 = PROD x 3 y 2 z 1

Since m1 6= m3 we want hash(m3) 6= hash(m1).
The blunder horribilis: hash was commutative on x , 1, y , 2, z , 3 so hash(m1) = hash(m3)!

It was easy for me to fix the problem. But how could this happen and why is it a disaster?

Michael Monagan 6 / 22



2: Maple’s unique representation model for algebraic expressions

Consider V4 the 4 by 4 Vandermonde matrix and its determinant D4.

Group 1: missing x1 −x32 x23 x4, x32 x3x24 , x22 x33 x4, − x22 x3x
3
4 , − x2x

3
3 x

2
4 , x2x

2
3 x

3
4

Group 2: missing x2 x31 x
2
3 x4, − x31 x3x

2
4 , − x21 x

3
3 x4, x

2
1 x3x

3
4 , x1x

3
3 x

2
4 , − x1x

2
3 x

3
4

Group 3: missing x3 −x31 x22 x4, x31 x2x24 , x21 x32 x4, − x21 x2x
3
4 , − x1x

3
2 x

2
4 , x1x

2
2 x

3
4

Group 4: missing x4 x31 x
2
2 x3, − x31 x2x

2
3 , − x21 x

3
2 x3, x

2
1 x2x

3
3 , x1x

3
2 x

2
3 , − x1x

2
2 x

3
3

Table: Terms in det(V4), the 4× 4 Vandermonde matrix

Each group has n!/n = (n − 1)! terms and each monomical in each group is in the same variables and
the exponents are a permutation of 1, 2, 3. Thus every monomial in each group has the same hash value!
This means searching Maple’s simpl table for one of these monomials is O((n − 1)!) instead of O(1).

Michael Monagan 7 / 22



3: Asymptotic blunders in systems codes

If an algorithm is O(n) or O(n log n) and the programmers’ implementation is O(n2) we say the
programmer has comitted an asymptotic blunder.

The bad hash function in Maple 3.3 is an example.

Do Maple, Magma, Singular, Macsyma have O(n2) algorithms in systems codes that should be O(n)?

Michael Monagan 8 / 22



3: Asymptotic blunders in systems codes

Read in a polynomial f with t terms in n variables from a text file.

f := 3*x^3-2*w*y*z-5*x*y^2*z+w^3-2*x*y*z-5*y*z^2*x+z^3-2*w*x*y;

It should be O(nt log t)?
Maple 3.3 and Singular 3.1 were O(nt2).
Macsyma and Magma are still O(nt2)!

Maxima Magma Maple Singular

t 5.45.0 (space) V2.28-29 2024 (.m format) 3.4.1

2000 0.77 0.06 0.010 0.006
4000 2.93 0.12 0.019 0.012
8000 11.92 (10.8gb) 0.43 0.038 (0.003) 0.024

16000 47.72 (43.4gb) 1.47 0.075 (0.009) 0.049
32000 199.27 (171gb) Seg fault 0.149 (0.012) 0.099

256000 NA NA 1.799 (0.070) 0.924

CPU time (in seconds) to read in a polynomial f with t terms in 8 variables with 2 digit coefficients.

Why does it take years (decades!) for such problems to be identified and fixed?
Michael Monagan 9 / 22



4: Representation of small integers

Computer Algebra Systems allow integers to have arbitrary length. Before GMP, Maple stored long
integers in arrays using a decimal base of B = 104 on a 32 bit computer.

INTPOS 3 and INTNEG 3333 2222 11

Maple 3.3’s representation for the integers 3 and −1122223333.

Most integer arithmetic in computations is with small integers.

PROD ↑ x ↑ 1 ↑ y ↑ 2 ↑ z ↑ 3

Maple 3.3’s representation for the monomial xy2z3.

Monomial multiplications are very slow.
How can we avoid allocating memory to add 2 + 3 ?

Michael Monagan 10 / 22



4: Representation of small integers

PROD ↑ x ↑ 1 ↑ y ↑ 2 ↑ z ↑ 3

Maple 3.3’s representation for the monomial xy2z3.

Word pointers are even; the least significant 3 bits are 0.
For a 64 bit computer encode −262 ≤ x < 262 as 2x + 1 which is odd.

PROD ↑ x 3 ↑ y 5 ↑ z 7

Maple 2024’s representation for the monomial x1y2z3.

In [7], Juho Snellman traces the idea back to early versions of Lisp.
But the Maple team did not know about it. We were C programmers!
Gaston Gonnet implemented it in Maple circa 1993. Another big efficiency gain.

Michael Monagan 11 / 22



5: Numerical Linear Algebra

Maple was also very slow at numerical linear algebra. Why?

1 The data representation used software floats.

FLOAT ↑ 314 ↑ −2 FLOAT 629 −3

Maple’s representation for π = 3.14 in Maple 3.3 and Maple 6.

2 Maple used a hash table to represent arrays, vectors and matrices.

3 The numerical library was coded in interpreted Maple not compiled C.

A culture change: Some algorithms needed to be implemented in C.
For Maple 6 arrays of hardware floats (singular, double and software precision) were added along with
the LAPACK library. Why? To compete with Matlab.

David Hare of Maplesoft led the project.

Michael Monagan 12 / 22



5: Numerical Linear Algebra

n = 200 linalg LinearAlgebra speedup
solve Ax = b 8.35 0.0042 1988x
multiply AB 15.18 0.0142 1069x
singular values of A 18.06 0.0150 1204x
eigenvalues of A 6.81 0.0748 91x

Timings in CPU seconds comparing the old linear algebra package linalg that uses software floats and
is coded in Maple verses the

Why did this take so long?
Maple was not embarassed by Macsyma into fixing it.

Michael Monagan 13 / 22



6: Polynomial Representations

Maple, Mathematica, Magma, Macsyma, and Singular use a distributed reprentation.

−4

3

2

0

POLY

−6

1

2

1

−8

3

0

0

−5

0

0

0

x

y

z

1

3

1

9

Singular’s sum-of-products representation for 9xy 3z − 4y 3z2 − 6xy 2z − 8x3 − 5

PROD 7

PROD 5

PROD 7

PROD 3

PROD 7 11 3

23 zy

1 2 1

3

zy

yx z

x

x

1−5−8−6−4SUM 11 9

Maple’s sum-of-terms representation for 9xy 3z − 4y 3z2 − 6xy 2z − 8x3 − 5

Michael Monagan 14 / 22



6: Polynomial Representations

Reduce, Derive, Macsyma, Trip and Pari use recursive representations.

3

0 1 3

2 3

2 1 1 9

0

−4

−8

−5

−6

POLY x

POLY z POLY z POLY z

POLY y POLY y

Trip’s sparse recursive representation for 9xy 3z − 4y 3z2 − 6xy 2z − 8x3 − 5

30 1 2

30 1 2

zPOLY 5 zPOLY 4

yPOLY 6yPOLY 6

POLY 6 x 0 −8

0 0−5 0 0

−400 0 −6 zPOLY 4

0 1

0 9

Pari’s recursive dense representation for 9xy 3z − 4y 3z2 − 6xy 2z − 8x3 − 5

Michael Monagan 15 / 22



6: Polynomial Representations

Which polynomial representation is best for × and ÷ ?

At the Macsyma User’s Conference in 1984, David Stoutemyer [8] observed that recursive dense is
faster than recursive sparse which is faster than distributed.

In [3] Richard Fateman in 2005 confirmed Stoutemyer’s observations and also
that Maple, Mathematica and Macsyma are slower than Singular and Magma.

Can the distributed representation be rescued ?
The problem is the monomial multiplications.

Michael Monagan 16 / 22



6: Polynomial Representations

Which polynomial representation is best for × and ÷ ?

At the Macsyma User’s Conference in 1984, David Stoutemyer [8] observed that recursive dense is
faster than recursive sparse which is faster than distributed.

In [3] Richard Fateman in 2005 confirmed Stoutemyer’s observations and also
that Maple, Mathematica and Macsyma are slower than Singular and Magma.

Can the distributed representation be rescued ?
The problem is the monomial multiplications.

Michael Monagan 16 / 22



6: Polynomial Representations

Roman Pearce and Michael Monagan introduced POLY into Maple 2014 [4, 5].

SEQ 4 x y z

−4 −6 −8 −59 5032 4121 3300 00005131POLY 12

Maple’s POLY representation for 9xy 3z − 4y 3z2 − 6xy 2z − 8x3 − 5

Encode x iy jzk as k + 216j + 232i + 248(i + j + k), a 64 bit integer.

Encode exponents in b = b64/(n + 1)c bits and deg(f ) using 64− nb bits if
f is not linear, has integer coefficients, and all monomials fit, otherwise use old SUM of PROD.

1 Monomials use one word instead of 2n + 1 words.

2 Monomial comparisons are 64 bit integer comparisons.

3 Monomial multiplication is a 64 bit integer addition.

4 Division does not need to test for overflow.

Michael Monagan 17 / 22



Three polynomial factorization benchmarks.

Has there been any real progress in polynomial factorization since 1980?
Compare Macsyma 5.45.0 with Maple 2024, Magma V2.28-19 and Singular 3.4.1
on three factorization benchmarks for Z[x1, x2, . . . , xn], namely, factoring det(Vn), det(Tn) and det(Cn).

Macsyma and Magma use Paul Wang’s multivariate Hensel lifting from 1978 [9].

Maple uses Monagan and Tuncer’s random polynomial time algorithm from 2016 [6].

Singular uses Michael Lee’s factorization code from his PhD Thesis in 2013.

Michael Monagan 18 / 22



Benchmark 1: factor Vandermonde determinants

V3 =

 1 x1 x21
1 x2 x22
1 x3 x23

 det(V3) = −x21 x2 + x21 x3 + x1x
2
2 − x1x

2
3 − x22 x3 + x2x

2
3

= (x3 − x2)(x3 − x1)(−x1 + x2).

Maple Magma Singular Maxima

n #det det factor det factor det factor det factor

7 5040 0.004 0.006 0.01 0.04 0.002 0.018 1.153 1.99
8 40320 0.024 0.036 0.02 0.50 0.029 0.180 17.56 44.99
9 362880 0.144 0.553 0.18 8.90 0.538 2.163 255.66 875.83

10 3628800 1.59 11.18 3.20 518.78 10.053 34.405 OM NA
11 39916800 19.39 252.60 34.26 22,739.0 131.202 8,851.09 NA NA
12 479001600 253.80 5334.6 NA NA NA NA NA NA

Timings (in CPU seconds) to compute and factor det(Vn). OM = Out of Memory, NA = Not Attempted.

Michael Monagan 19 / 22



Benchmark 2: factor symmetric Toeplitz determinants

T3 =

 x1 x2 x3
x2 x1 x2
x3 x2 x1

 det(T3) = x31 − 2x1x
2
2 − x1x

2
3 + 2x22 x3

= (x1 − x3)(x21 + x1x3 − 2x22 ).

Magma Maple Singular Maxima

n #f1,#f2 det factor det factor det factor det factor

8 167,167 0.01 0.09 .008 .089 0.003 0.018 .840 40.44
9 294,153 0.08 0.26 .026 .218 0.019 0.150 7.93 896.7

10 931,931 0.64 1.50 .382 3.83 0.112 2.406 64.18 22,013.1
11 1730,849 5.09 4.55 1.52 9.71 0.695 29.249 373.2 NA
12 5579,5579 32.93 94.89 6.71 21.92 4.526 405.785 NA NA
13 10611,4983 215.14 365.3 36.41 55.16 36.915 1,689.11 NA NA
14 34937,34937 1204.37 5,484.3 169.2 388.80 130.86 96,242.9 NA NA

Timings (in CPU seconds) to compute and factor det(Tn). NA = Not Attempted.

Michael Monagan 20 / 22



Benchmark 3: factor circulant matrix determinants

C3 =

 x1 x2 x3
x2 x3 x1
x3 x1 x2

 det(C3) = −x31 + 3x1x2x3 − x32 − x33
= (x1 + x2 + x3)(−x21 + x1x2 + x1x3 − x22 + x2x3 − x23 ).

Magma Maple Singular Maxima

n #det,#fmax det factor det factor det factor det factor

8 810, 86 0.01 0.05 .007 .084 0.003 0.018 0.580 0.361
9 2704, 1005 0.03 0.53 .027 .273 0.011 0.137 3.80 0.635

10 7492, 715 0.15 5.70 .135 2.18 0.056 0.340 30.39 4.037
11 32066,184756 0.95 104.52 .931 0.983 0.310 133.167 2922.1 35.42
12 86500, 621 7.02 2019.27 3.22 4.07 2.359 2.814 OM 113.97
13 400024,2704156 61.72 43,519.1 17.59 11.23 12.673 39,838.9 NA NA
14 1366500,27132 427.74 > 6days 160.8 508.2 54.865 296.051 NA NA

Timings (in CPU seconds) to compute and factor det(Cn). OM = Out of Memory, NA = Not Attempted.

Michael Monagan 21 / 22



References
Bruce Char, Keith Geddes, Morven Gentleman, Gaston Gonnet. The Design of Maple: a compact, portable, and
powerful Computer Algebra System. Proceedings of EUROCAL ’83, pp. 101–115, Springer, March 1983.

Bruce Char, Gregory Fee, Keith Geddes, Gaston Gonnet, Michael Monagan, Stephen Watt. On the Design and
Performance of the Maple System. Proceedings of the 1984 Macsyma User’s Conference, pp. 189–220, 1984.

Richard Fateman. Comparing the speed of programs for sparse polynomial multiplication. ACM SIGSAM Bulletin
37(1):4–15, 2003.

Michael Monagan and Roman Pearce. POLY: A new polynomial data structure for Maple. In Computer Mathematics,
Springer Verlag, pp. 325–348, October 2014.

Michael Monagan and Roman Pearce. The design of Maple’s sum-of-products and POLY data structures for
representing mathematical objects. Communications of Computer Algebra, 48 (4), pp. 166–186, December 2014.

Michael Monagan and Baris Tuncer. Using Sparse Interpolation in Hensel Lifting. Proceedings of CASC 2016, LNCS
9890:381–400, Springer, 2016.

Juho Snellman’s Weblog. Numbers and tagged pointers in early Lisp implementations.
https://www.snellman.net/blog/archive/2017-09-04-lisp-numbers/ Posted 2017.

David Stoutemyer. Which polynomial representation is best? Surprises Abound! Proceedings of the 1984 Macsyma
User’s Conference, pp. 221–243, July 1984.

Paul S. Wang. An improved Multivariate Polynomial Factoring Algorithm. Mathematics of Computation, 32, 1978.

Michael Monagan 22 / 22


