# Using Leslie matrices as the application of eigenvalues and eigenvectors in a first course in Linear Algebra

## Michael Monagan

Centre for Experimental and Constructive Mathematics
Simon Fraser University
British Columbia

# Linear Algebra and its Applications

David Lay • Stephen Lay • Judi McDonald.

- Ch 1 Linear Equations in Linear Algebra (9)

  Markov matrices and page ranking algorithms.
- Ch 2 Matrix Algebra (3)
- Ch 3 Determinants (3)
- Ch 4 Vector Spaces (6)
  The Lagrange and Newton bases.
- Ch 5 Eigenvalues and Eigenvectors (6)
  The Leslie age distribution model.
- Ch 6 Orthogonality and Least Squares (6)
  Least-Squares Problems

Why the Leslie matrix?



## Talk Outline

- The Leslie population growth model.
- It's a linear transformation!
- The dominant eigenvalue and eigenvector.
- Questions we can ask students.
- Resources in the the paper.

## The Leslie population growth model.

Divide the females in a population into age groups  $G_1$ ,  $G_2$ , ...,  $G_n$ . Model fertility rates  $f_k$  and survival probabilities  $s_k$ .



Figure: Leslie model for grey seal population on Sable Is.

## It's a linear transformation!

Let  $p_i^t$  be the number of females in  $G_i$  at time t. Let  $P^{(t)} = [p_1^t, p_2^t, \dots, p_n^t]$  be the population vector at time t. Then

$$P^{(t+1)} = \left[ \begin{array}{c} f_1 p_1^t + f_2 p_2^t + f_3 p_3^t \\ s_1 p_1^t \\ s_2 p_2^t + s_3 p_3^t \end{array} \right]$$

$$P^{(t+1)} = \underbrace{\begin{bmatrix} f_1 & f_2 & f_3 \\ s_1 & 0 & 0 \\ 0 & s_2 & s_3 \end{bmatrix}}_{\text{Leslie Matrix } L} \begin{bmatrix} p_1^t \\ p_2^t \\ p_3^t \end{bmatrix}$$

```
> L := Matrix([[0.0,1.26,2.00],[0.624,0,0],[0,0.808,0.808]]);
```

$$L := \left[ \begin{array}{ccc} 0 & 1.26 & 2.0 \\ 0.614 & 0 & 0 \\ 0 & 0.808 & 0.808 \end{array} \right]$$

The grey seal population has exploded!

> P[0] := <1.0,1.0,1.0>:

Let  $D^{(t)}$  be the population distribution vector at time t.

So 
$$D^{(t)} = P^{(t)} / \sum_{i=1}^{n} P_i^{(t)}$$
.

- > local D: # by default D is the differential operator in Maple
  > pop := proc(v) local i; add(v[i],i=1..numelems(v)) end:
  > for i from 0 to t do D[i] := P[i]/pop(P[i]); od:
- > D[0],D[1],D[15],D[16];

```
 \left[ \begin{array}{c} 0.333333333 \\ 0.333333333 \\ 0.333333333 \end{array} \right], \ \left[ \begin{array}{c} 0.592727273 \\ 0.113454545 \\ 0.293818182 \end{array} \right], \ \left[ \begin{array}{c} 0.525372893 \\ 0.218742327 \\ 0.255884780 \end{array} \right], \ \left[ \begin{array}{c} 0.525372883 \\ 0.218742326 \\ 0.255884791 \end{array} \right]
```

Let  $D^{(t)}$  be the population distribution vector at time t. So  $D^{(t)} = P^{(t)} / \sum_{i=1}^{n} P_i^{(t)}$ .

```
> local D: # by default D is the differential operator in Maple
> pop := proc(v) local i; add(v[i],i=1..numelems(v)) end:
> for i from 0 to t do D[i] := P[i]/pop(P[i]); od:
> D[0],D[1],D[15],D[16];
```

```
 \left[ \begin{array}{c} 0.333333333 \\ 0.333333333 \\ 0.333333333 \end{array} \right], \quad \left[ \begin{array}{c} 0.592727273 \\ 0.113454545 \\ 0.293818182 \end{array} \right], \quad \left[ \begin{array}{c} 0.525372893 \\ 0.218742327 \\ 0.255884780 \end{array} \right], \quad \left[ \begin{array}{c} 0.525372883 \\ 0.218742326 \\ 0.255884791 \end{array} \right]
```

Thus  $D^{(t)}$  has converged to an eigenvector of L with eigenvalue

```
> seq( P[16][i]/P[15][i], i=1..3);
```

1.49871625062797, 1.49871627642614, 1.49871634352741

# The Dominant Eigenvalue and Eigenvector

#### **Theorem**

For any non-zero initial population  $P^0 = [p_1^0, p_1^0, \ldots, p_n^0]$ , if at least one fertility rate  $f_i$  is positive, the Leslie matrix L has a unique positive eigenvalue  $\lambda^+$ . If  $v^+$  is the corresponding eigenvector and at least two consecutive fertility rates are positive,  $\lambda^+$  is dominant and the population distribution will converge to an eigenvector of L, that is  $\lim_{t\to\infty} D^{(t)}$  exists and is a multiple of  $v^+$ .

We also have the following physical interpretation for  $\lambda^+$ .

- $\lambda^+ < 1$  means the population will decline exponentially.
- $\lambda^+ > 1$  means the population will grow exponentially.
- $\lambda^+=1$  means the population is stable, it does not change.

# Grey Seals and Northern Spotted Owls

|       | Gre   | y Seals |       |   | Leslie matrix |       |         |  |
|-------|-------|---------|-------|---|---------------|-------|---------|--|
| Age   | 0–4yr | 4–8yrs  |       | Γ | 0             | 1.26  | 2.00 ]  |  |
| $f_i$ | 0     | 1.26    | 2.00  |   | .614          |       |         |  |
| Si    | 0.604 | 0.808   | 0.808 | L | 0             | 0.808 | 0 0.808 |  |

Figure: Sable island grey seal data and Leslie matrix:  $\lambda^+ = 1.50$ 

|       | Spot  | Leslie matrix |             |   |      |      |           |
|-------|-------|---------------|-------------|---|------|------|-----------|
| Age   | 0–1yr | 1–2yrs        | $\geq$ 2yrs | ſ | - 0  | 0    | 0.33 ]    |
| $f_i$ | 0     | 0             | 0.33        |   | 0.18 | 0    | 0         |
| Si    | 0.18  | 0.71          | 0.94        |   | 0    | 0.71 | 0<br>0.94 |

Figure: Northern spotted owl data and Leslie matrix:  $\lambda^+ = 0.91$ 

To compute  $\lambda^+$  one must solve a cubic polynomial, easy with Maple.

## Population Growth Control

> L := Matrix([[0.0,1.26,2.00],[s1,0,0],[0,0.808,0.808]]);

$$L := \left[ \begin{array}{ccc} 0 & 1.26 & 2.0 \\ s1 & 0 & 0 \\ 0 & 0.808 & 0.808 \end{array} \right]$$

To stabilize the population: what must  $s_1$  be so that  $\lambda^+ = 1$ ?

$$Lx = 1x \implies (L - I)x = 0 \implies \det(L - I) = 0.$$

## Population Growth Control

> L := Matrix([[0.0,1.26,2.00],[s1,0,0],[0,0.808,0.808]]);

$$L := \left[ \begin{array}{ccc} 0 & 1.26 & 2.0 \\ s1 & 0 & 0 \\ 0 & 0.808 & 0.808 \end{array} \right]$$

To stabilize the population: what must  $s_1$  be so that  $\lambda^+ = 1$ ?

$$Lx = 1x \implies (L - I)x = 0 \implies \det(L - I) = 0.$$

- > I3 := IdentityMatrix(3):
- > Determinant(L-I3) = 0;

$$-0.192 + 1.85792 \, s1 = 0$$

> s1 = solve(Determinant(L-I3) = 0);

$$s1 = 0.1033413710$$

## Population Growth Control

```
> L := Matrix([[0.0,1.26*f,2.00*f],[0.694,0,0],[0,0.808,0.808]]);  \begin{bmatrix} 0 & 1.26f & 2f \\ 0.604 & 0 & 0 \\ 0 & 0.808 & 0.808 \end{bmatrix}
```

What must f be so that  $\lambda^+ = 1$ ?

```
> I3 := IdentityMatrix(3):
```

$$-0.192 + 1.12218368f = 0$$

$$f = 0.1710949851$$

### Some info on Leslie Matrices

A Leslie matrix is an n by n matrix of the form

$$L = \begin{bmatrix} f_1 & f_2 & \cdots & f_{n-1} & f_n \\ s_1 & 0 & \cdots & 0 & 0 \\ 0 & s_2 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & s_{n-1} & \mathbf{0} \end{bmatrix}$$

where  $n \ge 2$ , the survival rates  $s_i > 0$  and fertility rates  $f_i \ge 0$  with at least one  $f_i > 0$ .

Patrick H. Leslie

The use of matrices in certain population mathematics.

Biometrika, 33(3), 183-212, 1945.

## Resources in the paper.

- Exercises with nice matrices e.g.  $L = \begin{bmatrix} 0 & \frac{7}{6} & \frac{7}{6} \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{2}{3} & \frac{2}{3} \end{bmatrix}$  Here  $\det(A xI) = -x^3 + \frac{2}{3}x^2 + \frac{7}{12}x$  so L has eigenvalues  $0, \frac{7}{6}, -\frac{1}{2}$ .
- Some exercises with the eigenvalues and eigenvectors.
- Some some population control exercises.
- An Appendix of real data.
   Data is for Canadian female population in 1965 from Anton.
   Data for a New Zealand sheep population from Anton.
   Data for North Amerian woodland caribou from Poole.

The Sable Island grey seal data from Manske, Schwarz and Stobo.

Thank you for attending!