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Linear Algebra and its Applications
David Lay e Stephen Lay e Judi McDonald.

Ch 1 Linear Equations in Linear Algebra (9)

Markov matrices and page ranking algorithms.

Ch 2 Matrix Algebra (3)
Ch 3 Determinants (3)
Ch 4 Vector Spaces (6)

The Lagrange and Newton bases.

LINEAR ALGEBRA

Ch 5 Eigenvalues and Eigenvectors (6)
The Leslie age distribution model.

Ch 6 Orthogonality and Least Squares (6)

Least-Squares Problems

Why the Leslie matrix?

Michael Monagan (CECM) Maple Conference 2019 2 /13



© The Leslie population growth model.

@ It's a linear transformation!

© The dominant eigenvalue and eigenvector.
Q Questions we can ask students.

© Resources in the the paper.



The Leslie population growth model.

Divide the females in a population into age groups Gi, Go, ..., G,.
Model fertility rates f, and survival probabilities si.

seal pups young adults mature adults
0—4yrs 4 —8yrs > 8 yrs

Figure: Leslie model for grey seal population on Sable Is.
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Let p! be the number of females in G; at time t.
Let P() = [pt, ps, ..., pt] be the population vector at time t. Then

fipi + f2p5 + f3p5
P(t+1) _ 51P{

$2P5 + S3P5

h h f3 pi
PED — | s 0 0 ph
0 s s3 P3

Leslie Matrix L



> L := Matrix([[0.0,1.26,2.00],[0.624,0,0],[0,0.808,0.808]1]);
0 1.26 2.0
L:=] 0.614 0 0
0 0.808 0.808

> P[0] :=<1.0,1.0,1.0>:
> for i to 16 do P[i] := L.P[i-1]; od:
> P[0],P[1],P[15],P[16];

1.0 3.260 798.283951 1196.40113
1.0 |, 0.624 |, 332.370572 |, 498.129186

1.0 1.616 388.807105 582.711563

The grey seal population has exploded!
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Let D be the population distribution vector at time t.
So D®W = p /57 P,

> local D: # by default D is the differential operator in Maple
> pop := proc(v) local i; add(v[i],i=1..numelems(v)) end:

> for i from O to t do D[i] := P[i]/pop(P[i]); od:

> D[0],D[1],D[15],D[16];

0.333333333 0.592727273 0.525372893 0.525372883
0.333333333 |, 0.113454545 | | 0.218742327 |, 0.218742326
0.333333333 0.293818182 0.255884780 0.255884791
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Let D be the population distribution vector at time t.
So D®W = p /57 P,

> local D: # by default D is the differential operator in Maple
> pop := proc(v) local i; add(v[i],i=1..numelems(v)) end:

> for i from O to t do D[i] := P[i]/pop(P[i]); od:

> D[0],D[1],D[15],D[16];

0.333333333 0.592727273 0.525372893 0.525372883
0.333333333 |, 0.113454545 | | 0.218742327 |, 0.218742326
0.333333333 0.293818182 0.255884780 0.255884791

Thus D) has converged to an eigenvector of L with eigenvalue
> seq( P[16][i]/P[15][i], i=1..3 );

1.49871625062797, 1.49871627642614, 1.49871634352741
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The Dominant Eigenvalue and Eigenvector

Theorem

For any non-zero initial population P® = [p® p9 ... p°], if at least
one fertility rate f; is positive, the Leslie matrix L has a unique
positive eigenvalue \*. If v is the corresponding eigenvector and at
least two consecutive fertility rates are positive, A\ is dominant and
the population distribution will converge to an eigenvector of L, that
is lim_oo D) exists and is a multiple of v*.

We also have the following physical interpretation for \*.

At <1 means the population will decline exponentially.
AT >1 means the population will grow exponentially.
AT =1 means the population is stable, it does not change.
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Grey Seals and Northern Spotted Owls

Grey Seals Leslie matrix
Age | O—4yr 4-8yrs > 8yrs 0 126 200
f: 0 1.26 2.00 0.614 0 0
si | 0.604 0.808 0.808 0 0.808 0.808

Figure: Sable island grey seal data and Leslie matrix: AT = 1.50

Spotted Owls Leslie matrix
Age | O-1yr 1-2yrs > 2yrs 0 0 0.33
f; 0 0 033 018 0 0
S; 0.18 0.71 0.94 0 0.71 0.94

Figure: Northern spotted owl data and Leslie matrix: A™ = 0.91

To compute A one must solve a cubic polynomial, easy with Maple.
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> L := Matrix([[0.0,1.26,2.00],[s1,0,0],[0,0.808,0.808]1);

0 126 20
L:=] sl 0 0
0 0.808 0.808

To stabilize the population: what must s; be so that At = 17
Ix=1x = (L-1)x=0 = det(L—1/)=0.



> L := Matrix([[0.0,1.26,2.00],[s1,0,0],[0,0.808,0.808]1);

0 126 20
L:=] sl 0 0
0 0.808 0.808
To stabilize the population: what must s; be so that At = 17

Ix=1x = (L-1)x=0 = det(L—1/)=0.

> I3 := IdentityMatrix(3):
> Determinant (L-I3) = 0;

—0.192 +1.85792s1 =0

> s1 = solve(Determinant(L-I3) = 0);

s1 =0.1033413710



> L := Matrix([[0.0,1.26%f,2.00%f],[0.694,0,0],[0,0.808,0.808]1);

0 1.26f 2f
0.604 0 0
0 0.808 0.808
What must f be so that A\ =17

> I3 := IdentityMatrix(3):
> Determinant(L-I3) = 0;

—0.192 + 1.12218368f =0

> f = solve(Determinant(L-I3) = 0);

f = 0.1710949851



Some info on Leslie Matrices

A Leslie matrix is an n by n matrix of the form

fl f2 fn—l fn_
ss 0 .-~ 0 O
[ — |0 s - 0 0
(0 0 -+ 5,1 O |

where n > 2, the survival rates s; > 0 and fertility rates f; > 0 with at
least one f; > 0.

Patrick H. Leslie
The use of matrices in certain population mathematics.

Biometrika, 33(3), 183-212, 1945.
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Resources in the paper.

0 1 1
6 6
o Exercises with nice matrices e.g. L = % 0 0 | Here
2 2
0 35 3
det(A — xI) = —x* + 2x? + 15x so L has eigenvalues 0, 7, —3.

o Some exercises with the eigenvalues and eigenvectors.
e Some some population control exercises.
o An Appendix of real data.

Data is for Canadian female population in 1965 from Anton.
Data for a New Zealand sheep population from Anton.
Data for North Amerian woodland caribou from Poole.

The Sable Island grey seal data from Manske, Schwarz and Stobo.

Thank you for attending!
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