A New Sparse Polynomial GCD by Separating Terms Michael Monagan

This is joint work with Qiao-Long Huang from Shandong Univerity.

Let $A, B \in \mathbb{Z}[x_1, \ldots, x_n]$.

Goal is to compute G = gcd(A, B) for A, B, G sparse.

Main application; simplify A/B

Pick a new 63 bit prime p.

Compute $gcd(A \mod p, B \mod p)$ in $\mathbb{F}_p[x_1, \dots, x_n]$.

Repeat this and use Chinese remaindering to recover the integer coefficients of G.

The Problem: How to compute gcd(A, B) in $\mathbb{F}_p[x_1, \dots, x_n]$?

Zippel 1979: sparse interpolation of x_2, \ldots, x_n , probabilistic

Trager and Kaltofen 1988: black-box

Diaz and Kaltofen 1995: black box

Hu and Monagan 2016: Kronecker substitution + Ben-Or/Tiwari

Gao and Huang ISSAC 2023: Let $A \in \mathbb{Z}[x_1, \ldots, x_n]$. Factor A

for
$$T = 2, 4, 8, 16, \dots$$
 do

- 1 pick primes p_1, p_2, \ldots, p_n randomly from \mathbb{P}_{32}
- 2 pick a single $s \in [0, T)^n$ at random
- 3 factor $A(x_i = p_i y^{s_i})$ in $\mathbb{Z}[y]$

Huang and Monagan ISSAC 2024: Let $A, B \in \mathbb{F}_p[x_1, \dots, x_n]$. Compute gcd(A, B)

for
$$T = 2, 4, 8, 16, \dots$$
 do

- 1 pick $\gamma \in \mathbb{F}_p^n$ and $\alpha \in \mathbb{F}_p^n$ at random.
- 2 for $\log_2 T$ choices of $s \in [0, T)^n$ chosen at random compute $\gcd(A(x_i = (\gamma_i z \alpha_i)y^{s_i}), B(x_i = (\gamma_i z \alpha_i)y^{s_i}))$ in $\mathbb{F}_p[z, y]$.

$$G = x_1^2 + 3x_1x_2 + 2x_2^3 - x_2$$

Fix $\gamma = [1, 1], \alpha = [2, 5]$ and try s = [2, 3].

$$G((z-\alpha_1)y^{s_1},(z-\alpha_2)y^{s_2})=(z-2)^2y^4+3(z-2)(z-5)y^5+2(z-5)^3y^9-(z-5)y^3.$$

To separate the terms of G we need $T \in O(t^2)$ where t = #G ldea: use several much smaller choices for s

Try
$$s = [1, 1]$$
. Let $\phi_1(f) = f((z-2)y, (z-5)y)$.

$$G_1 = \phi_1(G) = (z-2)(4z-17)y^2 + 2(z-5)^3y^3 - (z-5)y.$$

 $G_1^* = COLLISION + 2x_2^3 - x_2.$

Try
$$s = [2, 1]$$
. Let $\phi_2(f) = f((z-2)y^2, (z-5)y)$.

$$G_2 = \phi_2(G) = (z-2)^2 y^4 + (z-5)(2z^2 - 17z + 44)y^3 - (z-5)y.$$

 $G_2^* = x_1^2 + COLLISION - x_2.$

We are missing $+3x_1x_2$. Try another s?

In $\mathbb{F}_p[z,y]$ GCDs are unique up to a scalar in \mathbb{F}_p .

$$G_{1} = 2(z-5)^{3}y^{3} + (z-2)(4z-17)y^{2} - (z-5)y$$

$$\sim 1(z-5)^{3}y^{3} + \frac{1}{2}(z-2)(4z-17)y^{2} - \frac{1}{2}(z-5)y$$

$$G_{1}^{*} := x_{2}^{2} - \frac{1}{2}x_{2}$$

$$G_{2} = 1(z-2)^{2}y^{4} + (z-5)(2z^{2} - 17z + 44)y^{3} - (z-5)y$$

$$G_{2}^{*} := x_{1}^{2} - x_{2}$$

Notice the monomial x_2 is common to both G_1^* and G_2^* . Compute instead (Key idea)

$$H_2 := \frac{1}{2} G_2 - \phi_2(G_1^*) = \frac{1}{2} (z - 2)^2 y^4 + \frac{3}{2} (z - 2) (z - 5) y^3.$$

$$H_2^* = \frac{1}{2} x_1^2 + \frac{3}{2} x_1 x_2.$$

$$G_1^* := G_1^* + H_2^* = x_2^2 - \frac{1}{2} x_2 + \frac{1}{2} x_1^2 + \frac{3}{2} x_1 x_2.$$

Stop since H_2 had no collisions and output G_1^* which equals G w.h.p.

The Algorithm

Tries $T = 2, 4, 8, \ldots$ until $\log_2 T$ choices for s are enough to recover all terms of G.

$$G_1^*$$
 | G_2^* | G_3^* | G_4^* | G_5^* | G_6^* | 279 | 309 | 226 | 118 | 56 | 8

Table: For #G = 996, n = 9, deg G = 30 at step T = 64

Theorem. Let $A, B \in \mathbb{F}_p[x_1, \dots, x_n]$ and $d = \max_{i=1}^n \max(\deg(A, x_i), \deg(B, x_i))$. Our algorithm outputs $G = \gcd(A, B)$ with probability $\geq 11/12$ using

$$\tilde{O}(nT_{inp}d\log p\log^3 T_{out} + n^2d^2T_{out}\log p)$$

bit operations where $T_{inp} = \#A + \#B$, $T_{out} = \#G$.

Implementation in Maple + C

Do not compute

$$\begin{aligned} &A_k := A(x_i = (\gamma_i z - \alpha_i) y^{s_i}) \\ &B_k := B(x_i = (\gamma_i z - \alpha_i) y^{s_i}) \\ &G_k := \gcd(A_k, B_k) \text{ in } \mathbb{F}_p[z, y]. \end{aligned}$$
 in $\mathbb{F}_p[z, y]$. Instead, we compute
$$\begin{aligned} &\text{Let } D = \min(\deg A, \deg B) \geq \deg(G_k, z) \\ &\text{Pick } \beta_0 \neq \beta_1 \neq \dots \beta_D \text{ from } \mathbb{F}_p \text{ at random} \\ &\text{For } k = 0, 1, \dots, D \text{ do} \\ &g_k := \gcd(A(x_i = (\gamma_i \beta_k - \alpha_i) y^{s_i}), B(x_i = (\gamma_i \beta_k - \alpha_i) y^{s_i}) \text{ in } \mathbb{F}_p[y]. \end{aligned}$$
 Interpolate z in $G_k(v, z)$.

Optimization 1 To speed up evaluation of $A = \sum_{i=1}^{\#A} a_i M_i(x_1, \dots, x_n)$ compute

$$m_{ik} = M_i(\mathbf{x}_i = \gamma_i \beta_k - \alpha_i)$$
 for $1 \le j \le \#A$ and $0 \le k \le D$

and resuse the m_{ik} for each choice of s.

Benchmark 1

Let $A = G\bar{A}$, $B = G\bar{B}$ in $\mathbb{Z}[x_1, \dots, x_n]$ where $G = \gcd(A, B)$. G has t terms \bar{A} , \bar{B} have s terms. Monomials in n = 9 variables G, \bar{A}, \bar{B} have total degree 30.

S	t	MGCD	T	eval	Maple	Magma	MonHu
10 ⁵			4	10.22	78.92	39.90	0.661
10 ⁴			8	10.24	197.6	9.98	1.488
10 ³	10^{3}	29.65	64	10.27	1054.9	37.49	6.868
10 ²	10^{4}	13.43	16	10.24	14568.	27.68	1.087
10 ¹	10^{5}	10.67	4	9.47	NA	144.8	0.696

Table: Benchmark 1: Timings in CPU seconds for n=9

Maple and Magma are using Zippel's algorithm.

MGCD used two 63 bit primes.

Notice T is small: $T < \min(s, t)$.

Benchmark 2

Same as benchmark 1 except n = 18.

Here MonHu cannot use a 64 bit prime. It uses a 128 bit prime.

5	t	MGCD	T	eval	Maple	Magma	MonHu
10 ⁵	10^1	38.17	4	22.67	494.9	166.5	310.2
10 ⁴			16	24.62	1473.2	79.50	450.8
10^{3}	10^{3}	92.60	128	24.68	14287.	447.8	4358.
10 ²	10^{4}	50.54	16	24.64	NA	76.73	605.7
10^1	10 ⁵	39.61	4	22.59	NA	188.1	150.6

Table: Benchmark 2 timings in CPU seconds for n=18

Benchmark 3

Let $\Gamma = \gcd(LC(A, x_1), LC(B, x_1))$ and $\Delta = \Gamma/LC(\gcd(A, B))$.

Zippel and Monagan/Hu scale by images of Γ so interpolate ΔG which is not good if $\#\Delta \gg 1$. For example

$$G = x + y, \bar{A} = (y^2 - 1)x + y + 1, \bar{B} = (y^3 - 1)x + y - 1$$

Here $\Delta = y-1$ and $\Delta G = (y-1)x + y^2 - 1$.

In benchmark 3 $\#\Delta = t/10$.

t	#A	MGCD	T	Maple	Magma	MonHu	tmax
50	22100	0.945	4	82.86	2.17	0.279	150
100	169096	6.359	8	2794.8	6.15	5.718	829
150	573732	21.36	16	25407.	148.2	37.10	1848
200	1352967	46.57	16	NA	1058.9	136.8	3349
300	4538198	143.5	32	NA	13752.	1079.1	7409
500	20849989	671.9	32	NA	NA	12400.	20656

Conclusion and Future Work

- We have a new GCD algorithm for $\mathbb{F}_p[x_1,\ldots,x_n]$ that has polynomial complexity in $T_{inp}=\#A+\#B$ and $T_{out}=\#G$.
- It works well in practice for all inputs and 32 bit primes are good.
- It's easy to code; it does not need any fast arithmetic for good performance.
- TODO: how big does T need to be for the algorithm succeeds?
- TODO: parallelize $gcd(A(x_i = (\gamma_i \beta_k \alpha_i)y^{s_i}), B(x_i = (\gamma_i \beta_k \alpha_i)y^{s_i}))$ on k.

Thank you for coming.