
Algorithm CMSHL
1: Input: αj ∈ Zp, the black box B, f̂ρ,j−1 ∈ Zp[x1, · · · , xj−1] for 1 ≤ ρ ≤ r s.t.

sqf(aj(xj = αj)) =
∏r
ρ=1 λρ

∏r
ρ=1 f̂ρ,j−1 with j > 2, di (degrees of a in xi) for 1 ≤ i ≤ n.

2: Output: f̂ρ,j ∈ Zp[x1, · · · , xj] for 1 ≤ ρ ≤ r s.t. sqf(aj) =
∏r
ρ=1 λρ

∏r
ρ=1 f̂ρ,j

where f̂ρ,j(xj=αj) = f̂ρ,j−1 for 1 ≤ ρ ≤ r; Otherwise, return FAIL.

3: Let f̂ρ,j−1 =
∑dfρ

i=0 σρ,i(x2, ..., xj−1)x
i
1 where σρ,i =

∑sρ,i
k=1 cρ,ikMρ,ik with Mρ,ik the monomials in

σρ,i and dfρ = deg(̂fρ,j−1, x1) for 1 ≤ ρ ≤ r.
4: Pick βββ = (β2, · · · , βj−1) ∈ Zj−2

p at random.
5: Evaluate: {Sρ = {Sρ,i = {mρ,ik = Mρ,ik(βββ), 1 ≤ k ≤ sρ,i}, 0 ≤ i ≤ dfρ}, 1 ≤ ρ ≤ r}.
6: if any |Sρ,i| 6= sρ,i then return FAIL end if
7: Let s be the maximum of sρ,i.
8: for k from 1 to s do
9: Let Yk = (x2 = βk2, · · · , xj−1 = βkj−1).

10: Ak← aj(x1,Yk, xj). � via probes to B and interpolationO(sd1dj · C(probe B))

11: gk← gcd(Ak,
∂Ak
∂x1

) mod p. if deg(gk, x1) 6= d1 −
∑r
ρ=1 dfρ then return FAIL end if

12: Ak← quo(Ak, gk) mod p. � to get sqf(Ak) mod p, no content in x1.
13: Fρ,k← f̂ρ,j−1(x1,Yk) for 1 ≤ ρ ≤ r. .O(s(#f1 + · · · +#fr))
14: if any deg(Fρ,k) < dfρ for 1 ≤ ρ ≤ r then return FAIL end if
15: if gcd(Fρ,k, Fφ,k) 6= 1 for any ρ 6= φ (1 ≤ ρ, φ ≤ r) then return FAIL end if
16: f̂ρ,k← BivariateHenselLift(Ak(x1, xj), Fρ,k(x1), αj, p).O(s(d1d2j + d21dj))
17: end for
18: Let f̂ρ,k =

∑tρ
l=1αρ,klM̃ρ,l(x1, xj) for 1 ≤ k ≤ s where tρ = #f̂ρ,k, for 1 ≤ ρ ≤ r.

19: for ρ from 1 to r do
20: for l from 1 to tρ do
21: i← deg(M̃ρ,l, x1).

22: Solve the linear system for cρ,lk:
{∑sρ,i

k=1m
n
ρ,ikcρ,lk = αρ,nl for 1 ≤ n ≤ sρ,i

}
.

23: end for .O(sdj(#f1 + · · · +#fr))

24: Construct f̂ρ,j←
∑tρ

l=1

(∑sρ,i
k=1 cρ,lkMρ,ik(x2, ..., xj−1)

)
M̃ρ,l(x1, xj).

25: end for
26: Pick βββ = (β2, · · · , βj) ∈ Zj−1

p at random.
27: Aβββ ← sqf(aj(x1,βββ)) mod p � via probes to B, interpolation, and square-free computation.
28: if f̂ρ,j(x1,βββ) | Aβββ and deg(̂fρ,j(x1,βββ)) = dfρ for 1 ≤ ρ ≤ r then return f̂ρ,j for 1 ≤ ρ ≤ r

else return FAIL end if

Implementation Results
We have implemented our new algorithm in Maple with major subroutines coded in C. The first table
shows the CPU timings (in seconds) for our new algorithm, compared with Maple and Magma’s
current best determinant and factorization algorithms. Our algorithm is much faster.

n 4 5 6 7 8 9
N = 2n 8 10 12 14 16 20

#fi 7,7,7,7 12,7,12,7 32,32,32,32 56,30,56,30 167,167,167,167 153,294,153,294
#det(A) 120 701 5162 79740 1716810 7490224

CMSHL total 0.092 0.257 0.972 3.618 19.677 40.219
total probes 721 2112 6453 19584 85189 145065
Maple det 0.057 0.455 7.880 382.80 > 64 gigs -

Maple factor 0.140 0.109 0.326 1.270 - -
Maple total 0.197 0.564 8.206 384.07 - -
Magma det 0.140 1.680 6.290 594.60 > 3h -

Magma factor 0.800 0.120 0.480 33.140 - -
Magma total 0.940 1.800 6.770 627.74 - -

The second table is a breakdown of timings for the 4 major subroutines, namely, (1) the probes to the
black box to interpolate the bivariate images Ak(x1, xj) of a in step 10 (BB total), (2) evaluating the
factors f̂ρ,j−1 for 1 ≤ ρ ≤ r in step 13 (Eval f̂ρj−1), (3) the non-monic bivariate Hensel lifts in step
16 (BHL), and (4) solving the Vandermonde systems in step 22 (VSolve).

n 4 5 6 7 8 9
N = 2n 8 10 12 14 16 20

H.L. xn total 0.041 0.088 0.385 0.868 5.931 12.163
s (H.L. xn) 5 9 25 31 131 201

BB total 0.010 0.028 0.138 0.429 3.389 7.678
BB eval 0.005 0.017 0.083 0.322 2.639 5.936
BB det 0.004 0.004 0.038 0.078 0.450 1.015

Eval f̂ρj−1 0.002 0.001 0.014 0.015 0.074 0.128
BHL 0.001 0.003 0.012 0.018 0.050 0.082

VSolve 0.002 0.001 0.007 0.007 0.016 0.020

References

[1] T. Chen and M. Monagan. The complexity and parallel implementation of two sparse mul-
tivariate Hensel lifting algorithms for polynomial factorization. In Proc. of CASC ’20, pages
150–169. Springer, 2020.

[2] T. Chen and M. Monagan. Factoring multivariate polynomials represented by black boxes – A
Maple + C implementation. To appear in Post Conference Proc. of CASC ’21, 2022.

[3] E. Kaltofen and B. M. Trager. Computing with polynomials given by black boxes for their eval-
uations: Greatest common divisors, factorization, separation of numerators and denominators.
J. Symb. Cmpt. 9(3):301–320. Elsevier, 1990.

[4] G. Paluck and M. Monagan. New bivariate Hensel lifting algorithm for n factors. ACM Com-
munications in Computer Algebra, 53(3):142–145, 2019.

Factoring Multivariate Polynomials
The black box representation of a polynomial is one of the most space efficient
implicit representations [3]. Given a polynomial a ∈ Z[x1, · · · , xn] represented by a
black box, we aim to compute its factors in the sparse representation. Figure 1 shows
three ways to compute them. Method 0 first interpolates the sparse representation of
a and then factors it using a sparse Hensel lifting algorithm, e.g. algorithm CMSHL
[1]. Method I is Kaltofen and Trager’s method [3] which first constructs black boxes
for the factors then applies sparse polynomial interpolation to them. Method II
contributed by the authors in [2] computes the factors in the sparse representation
directly by a modified CMSHL algorithm. It works for the square-free and monic
case. Method II is the most efficient of the three and it outperforms Kaltofen and
Trager’s algorithm as it requires less number of probes to the black box [2].

f1(ααα), ..., fr(ααα)
ααα ∈ Zn

p

p

a ∈ Z[x1, ..., xn] f1, ..., fr ∈ Z[x1, ..., xn]

Sparse representation Sparse representation

Sparse interpolation Sparse interpolation

Kaltofen and Trager (1990)

Algorithm CMSHL

Chen and Monagan (2020)

Modified CMSHL

Black box representation of a
Evaluations of the factors

Method I: Method II:Method 0:

Figure 1: Factoring Multivariate Polynomials Represented by Black Boxes

In this work, we complete the black box factorization problem with a new algorithm
that handles non-monic input a. Our new algorithm accepts all cases of input a ∈
Z[x1, · · · , xn] including the non-square-free and the non-primitive cases.

The jth Hensel lifting step for our new algorithm is shown in Algorithm CMSHL.
The key is that we reduce each Hensel lifting step to many bivariate Hensel lifts
by evaluation and sparse interpolation [2]. Then for the non-monic case, we use
the square-free part of the bivariate images of a (sqf(Ak) in step 12) to compute all
bivariate Hensel lifts. We have modified the algorithm in [4] to make the bivariate
Hensel lifts work for the non-monic case. At the end of each bivariate Hensel lift, the
leading coefficients are multiplied by a scalar to match the input factors f̂ρj−1(x1, Yk).

Square-free Part of a ∈ Z[x1, · · · , xn]
We define the square-free part of a, sqf(a), as follows. Let a = hf e11 f

e2
2 · · · f err be the

irreducible factorization of a ∈ Z[x1, · · · , xn] over Z, where h ∈ Z[x2, · · · , xn] is
the content of a in x1. Then,

sqf(a) := f1f2 · · · fr = a/ gcd(a, ∂a/∂x1).

Note: cont(sqf(a), x1) = 1.

Number of Probes to the Black Box
Theorem.
Let a ∈ Z[x1, · · · , xn] be represented by a black box B. Let dj = deg(a, xj) for
1 ≤ j ≤ n. Let sj be he number s defined in step 7 of Algorithm CMSHL for the jj

Hensel lifting step. The total number of probes to B for algorithm CMSHL is∑n
j=2 sj(d1 + 1)(dj + 1) ∈ O(nd1dmaxsmax)

where dmax = max2≤j≤n dj and smax = max3≤j≤n sj.

While in Kaltofen and Trager’s method [3], the total number of probes to the black
box B is O(nd1dmax#fmax), where #fmax = max1≤ρ≤r#fρ. s < #fmax [2].

Benchmark Problem
The benchmark shows CPU times for factoring determinants which have four factors
where the size of the factors is much smaller than the size of the determinant. The
matrices are generated as follows. We first create two different n × n symmetric
Toeplitz matrices T1 and T2 with multivariate polynomial entries. Then we create
the N ×N block diagonal matrix B = [c1, c2] where c1 = [T1, 0]

T and c2 = [0, T2]
T .

Then we create an upper triangular matrix Pu with diagonal entries 1 and entries
above the diagonal chosen from {0, 1} at random and also a lower triangular matrix
Pl with diagonal entries 1 and entries below the diagonal chosen at random from
{0, 1}. Now we create the input matrix A = PlBPu so that

detA = detPl detB detPu = detB = detT1 detT2.

Department of Mathematics, Simon Fraser University, Canada
Tian Chen and Michael Monagan

Represented by Black Boxes
Factoring Non-monic Polynomials

4

S I M O N F R A S E R U N I V E R S I T Y

SFU Logo

