What's the best data structure for multivariate

polynomials in a world of 64 bit multicore
computers?

Michael Monagan

Center for Experimental and Constructive Mathematics
Simon Fraser University
British Columbia

ECCAD 2013, Annapolis, Maryland
April 27, 2012

This is joint work with Roman Pearce.

Michael Monagan ECCAD, Annapolis, 2013

Representations for 9 xy3z — 4y3z%2 — 6 xy?z — 8x3 — 5.

[PROD7] x [1 [y [3]z]1]

[PROD5[y [3] z [2]

A
Map|e16 [PROD7] x [1 [yJ2]z]1]
A
PROD3[x | 3 |
A
R IRF IR F IR EIEIRN

Michael Monagan ECCAD, Annapolis, 2013

Representations for 9 xy3z — 4y3z%2 — 6 xy?z — 8x3 — 5.

[PROD7] x [1 [y [3]z]1]

[pRoDs| y [3]z] 2|
A
Map|e16 [PROD7] x [1 [yJ2]z]1]
A
PROD3[x | 3 |
A
[sumt]| ¢ [o e[[-6[¢[8[5]1]

[POLY el ol o] o
9 =l

El
Singular 310 o+ 1+
n ar o5.1. y

ned o e

@ Memory access is not sequential.
e Monomial multiplication costs O(100) cycles.

Michael Monagan ECCAD, Annapolis, 2013

Our representation 9xy3z — 4y3z2 — 6xy?z — 8x3 — 5.

‘SEQ4‘x‘y‘z‘

(POLY 12| ¢ |5131] 9 [5032 -4 |4121] -6 [3300] -8 [0000] -5 |

Monomial encoding for graded lex order with x>y >z
Monomial > and x cost one instruction !!!!

Advantages

Michael Monagan ECCAD, Annapolis, 2013

Our representation 9xy3z — 4y3z2 — 6xy?z — 8x3 — 5.

‘SEQ4‘x‘y‘z‘

(POLY 12| ¢ |5131] 9 [5032 -4 |4121] -6 [3300] -8 [0000] -5 |

Monomial encoding for graded lex order with x>y >z
Monomial > and x cost one instruction !!!!

Advantages
@ It's about four times more compact.
@ Memory access is sequential.
@ The simpl table is not filled with PRODs.

@ Division cannot cause exponent overflow in a graded lex order.

Michael Monagan ECCAD, Annapolis, 2013

Memory Controller

Shared
L3 Cache -

Core i7- 3930K © 3.20 GHz

Core i7 920 @ 2.67 GHz 32 nm lithography, Q4 2011
45nm lithography, Q4 2008 Overclocked @ 4.2 GHz

Michael Monagan ECCAD, Annapolis, 2013

Multicore Computers: AMD FX 8350 Intel i7 4770

4th Generation
Intel® Corg"‘ Processor

AMD FX 8350 @ 4.2 GHz Intel Core i7-4770 @ 3.5 GHz

8 core, 32nm, Q4, 2012 4 core, 22 nm, Q2 2013
Full integer support. Only 5-10% faster.

How should we parallelize Maple?
How would that speed up polynomial factorization?

Michael Monagan ECCAD, Annapolis, 2013

Talk Outline

Let’s parallelize polynomial multiplication and division.

@ Johnson's sequential polynomial multiplication
@ Our parallel polynomial multiplication

@ A multiplication and factorization benchmark

Why is parallel speedup poor?

Maple 17 integration of POLY
New timings for same benchmark.

°
°
@ Notes on integration into Maple 17 kernel.
°

Future work.

Michael Monagan ECCAD, Annapolis, 2013

Sequential multiplication using a binary heap.

Let f=fA+ -+ Ffa=c1 Xy + - cnXp.
letg=g1+ - +gn=0d. Y1+ - dmnYm.
Compute f xg=f-g+h-g+---+1f-g.

Johnson (1974) simultaneous n-ary merge (heap): O(mnlog n).

Michael Monagan ECCAD, Annapolis, 2013

Sequential multiplication using a binary heap.

Let f=fA+ -+ Ffa=c1 Xy + - cnXp.
letg=g1+ - +gn=0d. Y1+ - dmnYm.
Compute f xg=f-g+h-g+---+1f-g.

Johnson (1974) simultaneous n-ary merge (heap): O(mnlog n).

~— [X (g+ &+ &+ + &)

add Hhe |7 Lo x (g1+ &+ &+ + &)

frgt+ .. == ~— X (g+ S+ G+ .. +8,)
f1g2 - :

Heap -~ [, X (g+ S+ &G+ . +8,)

@ |Heap| < n = O(nmlogn) comparisons.

@ Delay coefficient arithmetic to eliminate garbage!

Michael Monagan ECCAD, Annapolis, 2013

Parallel multiplication using a binary heap.

Local Heaps

oo / A\
f

Target architecture One thread per core.

Michael Monagan ECCAD, Annapolis, 2013

Parallel multiplication using a binary heap.

Local Heaps

oo / A\
s

Target architecture One thread per core.

Threads write to a finite circular buffer.
0 N-1

I | |

r w

rmod N %wmodN

Threads try to acquire global heap as buffer fills up to balance load.

Michael Monagan ECCAD, Annapolis, 2013

Maple 16 multiplication and factorization benchmark.

Intel Core i7 920 2.66 GHz (4 cores) Times in seconds
Maple Maple 16 Magma Singular Mathem
multiply 13 | 1 core 4 cores 2.16-8 3.1.0 atica 7
pr = h(A+1) 1.60 | 0.063 0.030 0.30 0.58 4.79
pa = fa(fa + 1) 95.97 2.14 0.643 13.25 30.64 273.01
factor Hensel lifting is mostly polynomial multiplication!
p1 12341 terms 31.10 2.80 2.65 6.15 12.28 11.82
pa 135751 terms | 2953.54 | 59.29 46.41 | 332.86 404.86 655.49

fi=l+x+y+2)2+1 1771 terms
fa=(l+x+y+z+t)0+1 10626 terms

Parallel speedup for 2 x (f4 + 1) is 2.14 / .643 = 3.33x. Why?

Michael Monagan ECCAD, Annapolis, 2013

Maple 16 Integration of POLY

To expand sums f x g Maple calls ‘expand/bigprod(f,g)‘
if #f > 2 and #g > 2 and #f x #g > 1500.

‘expand/bigprod¢ := proc(a,b) # multiply two large sums
if type(a,polynom(integer)) and type(b polynom(integer)) then
x := indets(a) union indets(b); := nops(x);
A := sdmp:-Import(a, phx(op(x)), pack=k) ;
B := sdmp:-Import(b, plex(op(x)), pack=k);
C := sdmp:-Multiply(4,B);
return sdmp:-Export(C);
else
‘expand/bigdiv‘ := proc(a,b,q) # divide two large sums
x := indets(a) union indets(b); k := nops(x)+1;
A := sdmp:-Import(a, grlex(op(x)), pack=k);
B := sdmp:-Import(b, grlex(op(x)), pack=k);

Michael Monagan ECCAD, Annapolis, 2013

Make POLY the default representation in Maple.

If we can pack all monomials into one word use

‘SEQ4‘x‘y‘z‘

[PoLY 12| ¢ [5131] 9 |5032 -4 |4121] -6 [3300] -8 [0000] -5 |

otherwise use the sum-of-products structure.

Michael Monagan ECCAD, Annapolis, 2013

Make POLY the default representation in Maple.

If we can pack all monomials into one word use

‘SEQ4‘x‘y‘z‘

[PoLY 12| ¢ [5131] 9 |5032 -4 |4121] -6 [3300] -8 [0000] -5 |

otherwise use the sum-of-products structure.

But must reprogram entire Maple kernel for new POLY !!

0o(1) degree(f); lcoeff(f); indets(f);
O(n+t) degree(f,x); expand(x*t); diff(f,x);

For f with t terms in n variables.

Michael Monagan ECCAD, Annapolis, 2013

High performance solutions: coeff

‘SEQ4‘x‘y‘z‘

[PoLY 12| & [5131] 9 |5032 -4 [4121] -6 [3300] -8 [0000] -5 |

To compute coeff (f,y,3) we need to

(d[i[3]k] 1 [o[d3[ilk] 2

We can do step 1 in O(1) bit operations.
Can we do step 2 faster than O(n) bit operations?

Michael Monagan ECCAD, Annapolis, 2013

High performance solutions.

/* pre-compute masks for compress_fast */
static void compress_init(M_INT mask, M_INT *v)

/* compress monomial m using precomputed masks v */
/* in 0(log_2 WORDSIZE) bit operations */
static M_INT compress_fast(M_INT m, M_INT *v)

{ M_INT t;
if (v[0]) t =m & v[0], m=m "~ t | (t > 1);
if (W[]D) t=m& v[ll, m=m "~ t | (t > 2);
if (w2]) t=m&v[2l, m=m "~ t | (t > 4);
if (v[3]) t =m & v[3], m=m "~ t | (t > 8);
if (v[4]) t=m& v[4l, m=m "t | (t > 16);
#if WORDSIZE > 32
if (v[5]) t =m & v[5], m=m "~ t | (£t > 32);
#endif
return m;
}

o Costs 24 bit operations per monomial.
o Intel Haswell (2013): 1 cycle (PEXT/PDEP)

Michael Monagan ECCAD, Annapolis, 2013

Result: everything except op and map is fast!

command Maple 16 Maple 17 speedup notes

coeff(f,x,20) 2.140 s 0.005 s 420x terms easy to locate
coeffs(f,x) 0.979 s 0.119 s 8x reorder exponents and radix
frontend(g,[f]) 3.730s 0.000 s — O(n) looks at variables only
degree(f, x) 0.073 s 0.003 s 24x stop early using monomial d
diff(f,x) 0.956 s 0.031s 30x terms remain sorted
eval(f,x = 6) 3.760 s 0.175 s 21x use Horner form recursively
expand(2xxxf) 1190 s 0.066 s 18x terms remain sorted
indets(f) 0.060 s 0.000 s — O(1) first word in dag

op(f) 0.634 s 2.420 s 0.26x has to construct old structur
for t in f do 0.646 s 2.460 s 0.26x has to construct old structur
subs(x =y, f) 1.160 s 0.076 s 15x combine exponents, sort, me
taylor(f,x,50) 0.668 s 0.055 s 12x get coefficients in one pass
type(f, polynom) 0.029 s 0.000 s — O(n) type check variables only

For f with n = 3 variables and t = 10° terms created by
f := expand(mul (randpoly(v,degree=100,dense) ,v=[x,y,z])):

Michael Monagan ECCAD, Annapolis, 2013

Maple 17 multiplication and factorization benchmark

Intel Core i5 750 2.66 GHz (4 cores) Times in seconds
Maple 16 Maple 17 Magma Singular
multiply 1 core 4 cores | 1 core 4 cores 2.19-1 3.14
pa = fa(fa + 1) 2.140 0.643 | 1.770 0.416 13.43 31.59
pe := foge 0.733 0.602 | 0.203 0.082 0.90 2.75
factor Singular’s factorization improved!
ps 135751 terms | 59.27 46.41 | 24.35 12.65 | 325.26 61.05
pe 417311 terms | 51.98 49.07 8.32 6.32 | 364.67 42.08

fai=(1+x+y+z+1t)2°+1 10626 terms
fo=1+uv*+v+w?+x—y)0+1 3003 terms
g=01+u+vi+w+x2+y)0+1 3003 terms

Parallel speedup for 2 x (f4 + 1) is 1.77/0.416 = 4.2 x.

Michael Monagan ECCAD, Annapolis, 2013

Notes on integration of POLY for Maple 17

Given a polynomial f(xg, x2, ...,), we store f using POLY if

(1) f is expanded and has integer coefficients,

(2) d >1and t > 1 where d = degf and t = #terms,

(3) we can pack all monomials of f into one 64 bit word, i.e. if

d < 2b where b = {%J

Otherwise we use the sum-of-products representation.

Michael Monagan ECCAD, Annapolis, 2013

Notes on integration of POLY for Maple 17

Given a polynomial f(xg, x2, ...,), we store f using POLY if

(1) f is expanded and has integer coefficients,

(2) d >1and t > 1 where d = degf and t = #terms,

(3) we can pack all monomials of f into one 64 bit word, i.e. if
d < 2P where b = {%J

Otherwise we use the sum-of-products representation.

@ The representation is invisible to the Maple user.
Conversions are automatic.

Michael Monagan ECCAD, Annapolis, 2013

Notes on integration of POLY for Maple 17

Given a polynomial f(xg, x2, ...,), we store f using POLY if

(1) f is expanded and has integer coefficients,

(2) d >1and t > 1 where d = degf and t = #terms,

(3) we can pack all monomials of f into one 64 bit word, i.e. if
d < 2P where b = {%J

Otherwise we use the sum-of-products representation.

@ The representation is invisible to the Maple user.
Conversions are automatic.
@ POLY polynomials will be displayed in sorted order.

Michael Monagan ECCAD, Annapolis, 2013

Notes on integration of POLY for Maple 17

Given a polynomial f(xg, x2, ...,), we store f using POLY if

(1) f is expanded and has integer coefficients,

(2) d >1and t > 1 where d = degf and t = #terms,

(3) we can pack all monomials of f into one 64 bit word, i.e. if

d < 2b where b = {%J

Otherwise we use the sum-of-products representation.

@ The representation is invisible to the Maple user.
Conversions are automatic.

@ POLY polynomials will be displayed in sorted order.
o Packing is fixed by n = #variables.

Michael Monagan ECCAD, Annapolis, 2013

Degree limits (64 bit word)

per variable total degree
n | #bits max deg | extra bits max deg
6 9 511 1 1023
7 8 255 0 255
8 7 127 1 255
9 6 63 4 1023
10 5 31 9 16383
11 5 31 4 511
12 4 15 12 65535
13 4 15 8 4095
14 4 15 4 255
15 4 15 0 15
16 3 7 13 65535
19 3 7 4 127
20 3 7 1 15

Joris van der Hoven: Do you use the extra bits for the total degree?
My answer: No, because it would complicate and slow down the code,
e.g., polynomial division would require explicit overflow checking.

Eg b=2x%2+y® + x?y +y® = y with remainder —y*.

Michael Monagan ECCAD, Annapolis, 2013

Degree limits (64 bit word)

per variable total degree Vandermonde
n | #bits max deg | extra bits max deg | deg(det(V,)) time(s)
6 9 511 1 1023 15 0.008s
7 8 255 0 255 21 0.008s
8 7 127 1 255 28 0.043s
9 6 63 4 1023 36 0.264s
10 5 31 9 16383 45 43.83s
11 5 31 4 511 55 -
12 4 15 12 65535 66 -
13 4 15 8 4095 78 -
14 4 15 4 255 91 -
15 4 15 0 15 - -
16 3 7 13 65535 - -
19 3 7 4 127 - -
20 3 7 1 15 - -

Joris van der Hoven: Do you use the extra bits for the total degree?
My answer: No, we can multiply f x g in POLY if deg f + deg g < 2°.
Moreover, polynomial division would require explicit overflow checking.

E.g. x°y? 4+ y® = x2y + y3 = y with remainder y*.

Michael Monagan ECCAD, Annapolis, 2013

@ POLY is in Maple 17 !

Michael Monagan ECCAD, Annapolis, 2013

@ POLY is in Maple 17 !

@ Use extra bits for total degree.

Michael Monagan ECCAD, Annapolis, 2013

@ POLY is in Maple 17 !
@ Use extra bits for total degree.

@ Rethink polynomial factorization for multi-core computers.

factor(p) p := expand(fxg)
cores 1 2 4 6 1 2 4 6
real time | 97.51s | 55.36s | 36.85s | 31.59s | 5.60s | 2.50s | 1.18s | 0.78s
speedup - 1.8x 2.7x 3.1x - 2.2x 4.7x 7.1x
Intel Core i7 3930K, 6 cores, overclocked @ 4.2GHz

Michael Monagan ECCAD, Annapolis, 2013

@ POLY is in Maple 17 !
@ Use extra bits for total degree.

@ Rethink polynomial factorization for multi-core computers.

factor(p) p := expand(fxg)
cores 1 2 4 6 1 2 4 6
real time | 97.51s | 55.36s | 36.85s | 31.59s | 5.60s | 2.50s | 1.18s | 0.78s
speedup - 1.8x 2.7x 3.1x - 2.2x 4.7x 7.1x
Intel Core i7 3930K, 6 cores, overclocked @ 4.2GHz

Let f(u,v,w,x,y) = (3 cijlu,v.w)x'y)) x (3 dij(u, v, w)x'yl) .
Pick o = (w1, w2, w3) € Z3 and for k = 1,2,--- factor

f(a* x,y) (Z Gij(o xy) X (Z d,-_j(ak)x"yj) mod p.

Michael Monagan ECCAD, Annapolis, 2013

Conclusion

We will not get good parallel speedup using these

[PROD7] x [1[y[8]z]1]
PRODS| y [3 [2 [2]
‘PR°D7‘X‘1\Y‘2‘Z“‘@ | |] o
PROD3] x Le] =] o] [2] [£]
Jer S B B 5 N S
vyl [s] 2] [o] [of
[somir[eJof[éJaTe[-6]8[8[5]1] 2] [[[o] [0

Even with conversions to a more suitable data structure,
sequential overhead will limit parallel speedup.

Thank you for attending my talk.

Michael Monagan ECCAD, Annapolis, 2013

