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Representations for 9 xy3z — 4y3z%2 — 6 xy?z — 8x3 — 5.
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[PROD7] x [ 1 [y [3]z]1]

[pRoDs| y [ 3]z ] 2|
A
Map|e16 [PROD7] x [1 [ yJ2]z]1]
A
PROD3[ x | 3 |
A
[sumt]| ¢ [o e[ [-6[¢[8[5]1]

[POLY el ol o] o
9 =l

El
Singular 310 o+ 1+
n ar o5.1. y

ned o e

@ Memory access is not sequential.
e Monomial multiplication costs O(100) cycles.
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Our representation 9xy3z — 4y3z2 — 6xy?z — 8x3 — 5.

‘SEQ4‘x‘y‘z‘

(POLY 12| ¢ |5131] 9 [5032 -4 |4121] -6 [3300] -8 [0000] -5 |

Monomial encoding for graded lex order with x>y >z
Monomial > and x cost one instruction !!!!

Advantages
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Our representation 9xy3z — 4y3z2 — 6xy?z — 8x3 — 5.

‘SEQ4‘x‘y‘z‘

(POLY 12| ¢ |5131] 9 [5032 -4 |4121] -6 [3300] -8 [0000] -5 |

Monomial encoding for graded lex order with x>y >z
Monomial > and x cost one instruction !!!!

Advantages
@ It's about four times more compact.
@ Memory access is sequential.
@ The simpl table is not filled with PRODs.

@ Division cannot cause exponent overflow in a graded lex order.
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Memory Controller

Shared
L3 Cache -

Core i7- 3930K © 3.20 GHz

Core i7 920 @ 2.67 GHz 32 nm lithography, Q4 2011
45nm lithography, Q4 2008 Overclocked @ 4.2 GHz
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Multicore Computers: AMD FX 8350 Intel i7 4770

4th Generation
Intel® Corg"‘ Processor

AMD FX 8350 @ 4.2 GHz Intel Core i7-4770 @ 3.5 GHz

8 core, 32nm, Q4, 2012 4 core, 22 nm, Q2 2013
Full integer support. Only 5-10% faster.

How should we parallelize Maple?
How would that speed up polynomial factorization?
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Talk Outline

Let’s parallelize polynomial multiplication and division.

@ Johnson's sequential polynomial multiplication
@ Our parallel polynomial multiplication

@ A multiplication and factorization benchmark

Why is parallel speedup poor?

Maple 17 integration of POLY
New timings for same benchmark.

°
°
@ Notes on integration into Maple 17 kernel.
°

Future work.
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Sequential multiplication using a binary heap.

Let f=fA+ -+ Ffa=c1 Xy + - cnXp.
letg=g1+ - +gn=0d. Y1+ - dmnYm.
Compute f xg=f-g+h-g+---+1f-g.

Johnson (1974) simultaneous n-ary merge (heap): O(mnlog n).
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Sequential multiplication using a binary heap.

Let f=fA+ -+ Ffa=c1 Xy + - cnXp.
letg=g1+ - +gn=0d. Y1+ - dmnYm.
Compute f xg=f-g+h-g+---+1f-g.

Johnson (1974) simultaneous n-ary merge (heap): O(mnlog n).

~— [ X (g+ &+ &+ + &)

add Hhe |7 Lo x (g1+ &+ &+ + &)

frgt+ .. == ~— X (g+ S+ G+ .. +8,)
f1g2 - :

Heap -~ [, X (g+ S+ &G+ . +8,)

@ |Heap| < n = O(nmlogn) comparisons.

@ Delay coefficient arithmetic to eliminate garbage!
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Parallel multiplication using a binary heap.

Local Heaps

oo / A\
f

Target architecture One thread per core.
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Parallel multiplication using a binary heap.

Local Heaps

oo / A\
s

Target architecture One thread per core.

Threads write to a finite circular buffer.
0 N-1

I | |

r w

rmod N %wmodN

Threads try to acquire global heap as buffer fills up to balance load.
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Maple 16 multiplication and factorization benchmark.

Intel Core i7 920 2.66 GHz (4 cores) Times in seconds
Maple Maple 16 Magma  Singular Mathem
multiply 13 | 1 core 4 cores 2.16-8 3.1.0 atica 7
pr = h(A+1) 1.60 | 0.063 0.030 0.30 0.58 4.79
pa = fa(fa + 1) 95.97 2.14 0.643 13.25 30.64 273.01
factor Hensel lifting is mostly polynomial multiplication!
p1 12341 terms 31.10 2.80 2.65 6.15 12.28 11.82
pa 135751 terms | 2953.54 | 59.29 46.41 | 332.86 404.86 655.49

fi=l+x+y+2)2+1 1771 terms
fa=(l+x+y+z+t)0+1 10626 terms

Parallel speedup for 2 x (f4 + 1) is 2.14 / .643 = 3.33x. Why?
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Maple 16 Integration of POLY

To expand sums f x g Maple calls ‘expand/bigprod(f,g)‘
if #f > 2 and #g > 2 and #f x #g > 1500.

‘expand/bigprod¢ := proc(a,b) # multiply two large sums
if type(a,polynom(integer)) and type(b polynom(integer)) then
x := indets(a) union indets(b); := nops(x);
A := sdmp:-Import(a, phx(op(x)), pack=k) ;
B := sdmp:-Import(b, plex(op(x)), pack=k);
C := sdmp:-Multiply(4,B);
return sdmp:-Export(C);
else
‘expand/bigdiv‘ := proc(a,b,q) # divide two large sums
x := indets(a) union indets(b); k := nops(x)+1;
A := sdmp:-Import(a, grlex(op(x)), pack=k);
B := sdmp:-Import(b, grlex(op(x)), pack=k);

Michael Monagan ECCAD, Annapolis, 2013



Make POLY the default representation in Maple.

If we can pack all monomials into one word use

‘SEQ4‘x‘y‘z‘

[PoLY 12| ¢ [5131] 9 |5032 -4 |4121] -6 [3300] -8 [0000] -5 |

otherwise use the sum-of-products structure.
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Make POLY the default representation in Maple.

If we can pack all monomials into one word use

‘SEQ4‘x‘y‘z‘

[PoLY 12| ¢ [5131] 9 |5032 -4 |4121] -6 [3300] -8 [0000] -5 |

otherwise use the sum-of-products structure.

But must reprogram entire Maple kernel for new POLY !!

0o(1) degree(f); lcoeff(f); indets(f);
O(n+t) degree(f,x); expand(x*t); diff(f,x);

For f with t terms in n variables.
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High performance solutions: coeff

‘SEQ4‘x‘y‘z‘

[PoLY 12| & [5131] 9 |5032 -4 [4121] -6 [3300] -8 [0000] -5 |

To compute coeff (f,y,3) we need to

(d[i[3]k] 1 [o[d3[ilk] 2

We can do step 1 in O(1) bit operations.
Can we do step 2 faster than O(n) bit operations?
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High performance solutions.

/* pre-compute masks for compress_fast */
static void compress_init(M_INT mask, M_INT *v)

/* compress monomial m using precomputed masks v */
/* in 0( log_2 WORDSIZE ) bit operations */
static M_INT compress_fast(M_INT m, M_INT *v)

{ M_INT t;
if (v[0]) t =m & v[0], m=m "~ t | (t > 1);
if (W[]D) t=m& v[ll, m=m "~ t | (t > 2);
if (w2]) t=m&v[2l, m=m "~ t | (t > 4);
if (v[3]) t =m & v[3], m=m "~ t | (t > 8);
if (v[4]) t=m& v[4l, m=m "t | (t > 16);
#if WORDSIZE > 32
if (v[5]) t =m & v[5], m=m "~ t | (£t > 32);
#endif
return m;
}

o Costs 24 bit operations per monomial.
o Intel Haswell (2013): 1 cycle (PEXT/PDEP)
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Result: everything except op and map is fast!

command Maple 16 Maple 17 speedup notes

coeff(f,x,20) 2.140 s 0.005 s 420x terms easy to locate
coeffs(f,x) 0.979 s 0.119 s 8x reorder exponents and radix
frontend(g,[f]) 3.730s 0.000 s — O(n) looks at variables only
degree(f, x) 0.073 s 0.003 s 24x stop early using monomial d
diff(f,x) 0.956 s 0.031s 30x terms remain sorted
eval(f,x = 6) 3.760 s 0.175 s 21x use Horner form recursively
expand(2xxxf) 1190 s 0.066 s 18x terms remain sorted
indets(f) 0.060 s 0.000 s — O(1) first word in dag

op(f) 0.634 s 2.420 s 0.26x has to construct old structur
for t in f do 0.646 s 2.460 s 0.26x has to construct old structur
subs(x =y, f) 1.160 s 0.076 s 15x combine exponents, sort, me
taylor(f,x,50)  0.668 s 0.055 s 12x get coefficients in one pass
type(f, polynom) 0.029 s 0.000 s — O(n)  type check variables only

For f with n = 3 variables and t = 10° terms created by
f := expand(mul (randpoly(v,degree=100,dense) ,v=[x,y,z])):
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Maple 17 multiplication and factorization benchmark

Intel Core i5 750 2.66 GHz (4 cores) Times in seconds
Maple 16 Maple 17 Magma  Singular
multiply 1 core 4 cores | 1 core 4 cores 2.19-1 3.14
pa = fa(fa + 1) 2.140 0.643 | 1.770 0.416 13.43 31.59
pe := foge 0.733 0.602 | 0.203 0.082 0.90 2.75
factor Singular’s factorization improved!
ps 135751 terms | 59.27 46.41 | 24.35 12.65 | 325.26 61.05
pe 417311 terms | 51.98 49.07 8.32 6.32 | 364.67 42.08

fai=(1+x+y+z+1t)2°+1 10626 terms
fo=1+uv*+v+w?+x—y)0+1 3003 terms
g=01+u+vi+w+x2+y)0+1 3003 terms

Parallel speedup for 2 x (f4 + 1) is 1.77/0.416 = 4.2 x.
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Notes on integration of POLY for Maple 17

Given a polynomial f(xg, x2, ..., ), we store f using POLY if

(1) f is expanded and has integer coefficients,

(2) d >1and t > 1 where d = degf and t = #terms,

(3) we can pack all monomials of f into one 64 bit word, i.e. if

d < 2b where b = {%J

Otherwise we use the sum-of-products representation.
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Notes on integration of POLY for Maple 17

Given a polynomial f(xg, x2, ..., ), we store f using POLY if

(1) f is expanded and has integer coefficients,

(2) d >1and t > 1 where d = degf and t = #terms,

(3) we can pack all monomials of f into one 64 bit word, i.e. if
d < 2P where b = {%J

Otherwise we use the sum-of-products representation.

@ The representation is invisible to the Maple user.
Conversions are automatic.
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Notes on integration of POLY for Maple 17

Given a polynomial f(xg, x2, ..., ), we store f using POLY if

(1) f is expanded and has integer coefficients,

(2) d >1and t > 1 where d = degf and t = #terms,

(3) we can pack all monomials of f into one 64 bit word, i.e. if

d < 2b where b = {%J

Otherwise we use the sum-of-products representation.

@ The representation is invisible to the Maple user.
Conversions are automatic.

@ POLY polynomials will be displayed in sorted order.
o Packing is fixed by n = #variables.
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Degree limits (64 bit word)

per variable total degree
n | #bits max deg | extra bits max deg
6 9 511 1 1023
7 8 255 0 255
8 7 127 1 255
9 6 63 4 1023
10 5 31 9 16383
11 5 31 4 511
12 4 15 12 65535
13 4 15 8 4095
14 4 15 4 255
15 4 15 0 15
16 3 7 13 65535
19 3 7 4 127
20 3 7 1 15

Joris van der Hoven: Do you use the extra bits for the total degree?
My answer: No, because it would complicate and slow down the code,
e.g., polynomial division would require explicit overflow checking.

Eg b=2x%2+y® + x?y +y® = y with remainder —y*.

Michael Monagan ECCAD, Annapolis, 2013



Degree limits (64 bit word)

per variable total degree Vandermonde
n | #bits max deg | extra bits max deg | deg(det(V,)) time(s)
6 9 511 1 1023 15 0.008s
7 8 255 0 255 21 0.008s
8 7 127 1 255 28  0.043s
9 6 63 4 1023 36  0.264s
10 5 31 9 16383 45  43.83s
11 5 31 4 511 55 -
12 4 15 12 65535 66 -
13 4 15 8 4095 78 -
14 4 15 4 255 91 -
15 4 15 0 15 - -
16 3 7 13 65535 - -
19 3 7 4 127 - -
20 3 7 1 15 - -

Joris van der Hoven: Do you use the extra bits for the total degree?
My answer: No, we can multiply f x g in POLY if deg f + deg g < 2°.
Moreover, polynomial division would require explicit overflow checking.

E.g. x°y? 4+ y® = x2y + y3 = y with remainder y*.
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@ POLY is in Maple 17 !
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@ POLY is in Maple 17 !

@ Use extra bits for total degree.
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@ POLY is in Maple 17 !
@ Use extra bits for total degree.

@ Rethink polynomial factorization for multi-core computers.

factor(p) p := expand(fxg)
# cores 1 2 4 6 1 2 4 6
real time | 97.51s | 55.36s | 36.85s | 31.59s | 5.60s | 2.50s | 1.18s | 0.78s
speedup - 1.8x 2.7x 3.1x - 2.2x 4.7x 7.1x
Intel Core i7 3930K, 6 cores, overclocked @ 4.2GHz
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@ POLY is in Maple 17 !
@ Use extra bits for total degree.

@ Rethink polynomial factorization for multi-core computers.

factor(p) p := expand(fxg)
# cores 1 2 4 6 1 2 4 6
real time | 97.51s | 55.36s | 36.85s | 31.59s | 5.60s | 2.50s | 1.18s | 0.78s
speedup - 1.8x 2.7x 3.1x - 2.2x 4.7x 7.1x
Intel Core i7 3930K, 6 cores, overclocked @ 4.2GHz

Let f(u,v,w,x,y) = (3 cijlu,v.w)x'y)) x (3 dij(u, v, w)x'yl) .
Pick o = (w1, w2, w3) € Z3 and for k = 1,2,--- factor

f(a* x,y) (Z Gij(o xy) X (Z d,-_j(ak)x"yj) mod p.
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Conclusion

We will not get good parallel speedup using these

[PROD7] x [1[y[8]z]1]
PRODS| y [ 3 [ 2 [ 2]
‘PR°D7‘X‘1\Y‘2‘Z“‘@ | | ] o
PROD3] x Le] =] o] [2] [£]
Jer S B B 5 N S
vyl  [s] 2] [o] [of
[somir[eJof[éJaTe[-6]8[8[5]1] 2] [ [ [o] [0

Even with conversions to a more suitable data structure,
sequential overhead will limit parallel speedup.

Thank you for attending my talk.
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