What's the best data structure for multivariate polynomials in a world of 64 bit multicore computers?

Michael Monagan

Center for Experimental and Constructive Mathematics
Simon Fraser University
British Columbia

ECCAD 2013, Annapolis, Maryland April 27, 2012

This is joint work with Roman Pearce.

Representations for $9 xy^3z - 4 y^3z^2 - 6 xy^2z - 8 x^3 - 5$.

Representations for $9 \times y^3 z - 4 y^3 z^2 - 6 \times y^2 z - 8 x^3 - 5$.

- Memory access is not sequential.
- Monomial multiplication costs O(100) cycles.

Our representation $9 \times y^3 z - 4 y^3 z^2 - 6 \times y^2 z - 8 x^3 - 5$.

Monomial encoding for graded lex order with x>y>zMonomial > and \times cost **one** instruction !!!!

Advantages

Our representation $9 \times y^3 z - 4 y^3 z^2 - 6 \times y^2 z - 8 x^3 - 5$.

Monomial encoding for graded lex order with x>y>zMonomial > and \times cost **one** instruction !!!!

Advantages

- It's about four times more compact.
- Memory access is sequential.
- The simpl table is not filled with PRODs.
- Division cannot cause exponent overflow in a graded lex order.

Multicore Computers: Intel's Corei7

Core i7 920 @ 2.67 GHz 45nm lithography, Q4 2008

Core i7-3930K @ 3.20 GHz 32 nm lithography, Q4 2011 Overclocked @ 4.2 GHz

Multicore Computers: AMD FX 8350 Intel i7 4770

AMD FX 8350 @ 4.2 GHz 8 core, 32nm, Q4, 2012 Full integer support.

Intel Core i7-4770 @ 3.5 GHz **4 core**, 22 nm, Q2 2013 Only 5–10% faster.

How should we parallelize Maple? How would that speed up polynomial factorization?

Talk Outline

Let's parallelize polynomial multiplication and division.

- Johnson's sequential polynomial multiplication
- Our parallel polynomial multiplication
- A multiplication and factorization benchmark

Why is parallel speedup poor?

- Maple 17 integration of POLY
- New timings for same benchmark.
- Notes on integration into Maple 17 kernel.
- Future work.

Sequential multiplication using a binary heap.

Let
$$f = f_1 + \cdots + f_n = c_1 X_1 + \cdots c_n X_n$$
.
Let $g = g_1 + \cdots + g_m = d_1 Y_1 + \cdots d_m Y_m$.
Compute $f \times g = f_1 \cdot g + f_2 \cdot g + \cdots + f_n \cdot g$.

Johnson (1974) simultaneous n-ary merge (heap): $O(mn \log n)$.

Sequential multiplication using a binary heap.

Let
$$f = f_1 + \cdots + f_n = c_1 X_1 + \cdots c_n X_n$$
.
Let $g = g_1 + \cdots + g_m = d_1 Y_1 + \cdots d_m Y_m$.
Compute $f \times g = f_1 \cdot g + f_2 \cdot g + \cdots + f_n \cdot g$.

Johnson (1974) simultaneous n-ary merge (heap): $O(mn \log n)$.

- $|Heap| \le n \implies O(nm \log n)$ comparisons.
- Delay coefficient arithmetic to eliminate garbage!

Parallel multiplication using a binary heap.

Target architecture

Parallel multiplication using a binary heap.

Target architecture

One thread per core.

Threads write to a finite circular buffer.

Threads try to acquire global heap as buffer fills up to balance load.

Maple 16 multiplication and factorization benchmark.

Intel Core i7 920 2.66 GHz (4 cores)

	Maple	Maple 16		Magma	Singular	Mathem
multiply	13	1 core	4 cores	2.16-8	3.1.0	atica 7
$p_1 := f_1(f_1+1)$	1.60	0.063	0.030	0.30	0.58	4.79
$p_4 := f_4(f_4 + 1)$	95.97	2.14	0.643	13.25	30.64	273.01
factor	Hensel lifting is mostly polynomial multiplication					ation!
p ₁ 12341 terms	31.10	2.80	2.65	6.15	12.28	11.82
p ₄ 135751 terms	2953.54	59.29	46.41	332.86	404.86	655.49

$$f_1 = (1 + x + y + z)^{20} + 1$$
 1771 terms
 $f_4 = (1 + x + y + z + t)^{20} + 1$ 10626 terms

Parallel speedup for $f_4 \times (f_4 + 1)$ is 2.14 / .643 = **3.33**×. Why?

Maple 16 Integration of POLY

```
To expand sums f \times g Maple calls 'expand/bigprod(f,g)'
if \#f > 2 and \#g > 2 and \#f \times \#g > 1500.
'expand/bigprod' := proc(a,b) # multiply two large sums
   if type(a,polynom(integer)) and type(b,polynom(integer)) then
     x := indets(a) union indets(b); k := nops(x);
     A := sdmp:-Import(a, plex(op(x)), pack=k);
     B := sdmp:-Import(b, plex(op(x)), pack=k);
     C := sdmp:-Multiply(A,B);
     return sdmp:-Export(C);
   else
'expand/bigdiv' := proc(a,b,q) # divide two large sums
     x := indets(a) union indets(b); k := nops(x)+1;
     A := sdmp:-Import(a, grlex(op(x)), pack=k);
     B := sdmp:-Import(b, grlex(op(x)), pack=k);
```

Make POLY the default representation in Maple.

If we can pack all monomials into one word use

otherwise use the sum-of-products structure.

Make POLY the default representation in Maple.

If we can pack all monomials into one word use

otherwise use the sum-of-products structure.

But must reprogram entire Maple kernel for new POLY !!

```
O(1) degree(f); lcoeff(f); indets(f);
O(n+t) degree(f,x); expand(x*t); diff(f,x);
```

For f with t terms in n variables.

High performance solutions: coeff

To compute coeff(f,y,3) we need to

We can do step 1 in O(1) bit operations.

Can we do step 2 faster than O(n) bit operations?

High performance solutions.

```
/* pre-compute masks for compress_fast */
static void compress_init(M_INT mask, M_INT *v)
/* compress monomial m using precomputed masks v */
/* in O( log_2 WORDSIZE ) bit operations */
static M_INT compress_fast(M_INT m, M_INT *v)
     M INT t:
      if (v[0]) t = m & v[0], m = m ^ t | (t >> 1);
      if (v[1]) t = m & v[1], m = m ^ t | (t >> 2);
      if (v[2]) t = m & v[2], m = m ^ t | (t >> 4);
      if (v[3]) t = m & v[3], m = m ^ t | (t >> 8);
      if (v[4]) t = m & v[4], m = m ^ t | (t >> 16);
#if WORDSIZE > 32
      if (v[5]) t = m & v[5], m = m ^ t | (t >> 32);
#endif
      return m;
}
```

- Costs 24 bit operations per monomial.
- Intel Haswell (2013): 1 cycle (PEXT/PDEP)

Result: everything except op and map is fast!

command	Maple 16	Maple 17	speedup	notes
coeff(f, x, 20)	2.140 s	0.005 s	420x	terms easy to locate
coeffs(f,x)	0.979 s	0.119 s	8x	reorder exponents and radix
frontend(g,[f])	3.730 s	0.000 s	$\rightarrow O(n)$	looks at variables only
degree(f,x)	0.073 s	0.003 s	24x	stop early using monomial de
diff(f,x)	0.956 s	0.031 s	30x	terms remain sorted
eval(f, x = 6)	3.760 s	0.175 s	21x	use Horner form recursively
$\overline{\text{expand}(2*x*f)}$	1.190 s	0.066 s	18x	terms remain sorted
indets(f)	0.060 s	0.000 s	$ ightarrow {\it O}(1)$	first word in dag
op(f)	0.634 s	2.420 s	0.26x	has to construct old structur
for t in f do	0.646 s	2.460 s	0.26x	has to construct old structur
$\overline{\operatorname{subs}(x=y,f)}$	1.160 s	0.076 s	15×	combine exponents, sort, me
$\frac{1}{\text{taylor}(f, x, 50)}$	0.668 s	0.055 s	12x	get coefficients in one pass
type(f, polynom)	0.029 s	0.000 s	$\rightarrow O(n)$	type check variables only
· · · · · · · · · · · · · · · · · · ·				·

For f with n=3 variables and $t=10^6$ terms created by $f := \operatorname{expand}(\operatorname{mul}(\operatorname{randpoly}(v,\operatorname{degree}=100,\operatorname{dense}),v=[x,y,z]))$:

Maple 17 multiplication and factorization benchmark

Intel Core i5 750 2.66 GHz (4 cores)

Times in seconds

	Maple 16		Maple 17		Magma	Singular		
multiply	1 core	4 cores	1 core	4 cores	2.19-1	3.1.4		
$p_4 := f_4(f_4 + 1)$	2.140	0.643	1.770	0.416	13.43	31.59		
$p_6:=f_6g_6$	0.733	0.602	0.203	0.082	0.90	2.75		
factor		Singular's factorization improved!						
p ₄ 135751 terms	59.27	46.41	24.35	12.65	325.26	61.05		
p ₆ 417311 terms	51.98	49.07	8.32	6.32	364.67	42.08		

$$\begin{array}{ll} f_4 = (1+x+y+z+t)^{20} + 1 & 10626 \text{ terms} \\ f_6 = (1+u^2+v+w^2+x-y)^{10} + 1 & 3003 \text{ terms} \\ g_6 = (1+u+v^2+w+x^2+y)^{10} + 1 & 3003 \text{ terms} \end{array}$$

Parallel speedup for $f_4 \times (f_4 + 1)$ is $1.77/0.416 = 4.2 \times$.

Given a polynomial $f(x_1, x_2, ..., x_n)$, we store f using POLY if

- (1) *f* is expanded and has integer coefficients,
- (2) d > 1 and t > 1 where $d = \deg f$ and t = #terms,
- (3) we can pack all monomials of f into one 64 bit word, i.e. if $d < 2^b$ where $b = \lfloor \frac{64}{n+1} \rfloor$

Otherwise we use the sum-of-products representation.

Given a polynomial $f(x_1, x_2, ..., x_n)$, we store f using POLY if

- (1) f is expanded and has integer coefficients,
- (2) d > 1 and t > 1 where $d = \deg f$ and t = #terms,
- (3) we can pack all monomials of f into **one 64 bit word**, i.e. if $d < 2^b$ where $b = \lfloor \frac{64}{n+1} \rfloor$

Otherwise we use the sum-of-products representation.

The representation is invisible to the Maple user.
 Conversions are automatic.

Given a polynomial $f(x_1, x_2, ..., x_n)$, we store f using POLY if

- (1) f is expanded and has integer coefficients,
- (2) d > 1 and t > 1 where $d = \deg f$ and t = #terms,
- (3) we can pack all monomials of f into **one 64 bit word**, i.e. if $d < 2^b$ where $b = \lfloor \frac{64}{n+1} \rfloor$

Otherwise we use the sum-of-products representation.

- The representation is invisible to the Maple user.
 Conversions are automatic.
- POLY polynomials will be displayed in sorted order.

Given a polynomial $f(x_1, x_2, ..., x_n)$, we store f using POLY if

- (1) f is expanded and has integer coefficients,
- (2) d > 1 and t > 1 where $d = \deg f$ and t = #terms,
- (3) we can pack all monomials of f into **one 64 bit word**, i.e. if $d < 2^b$ where $b = \lfloor \frac{64}{n+1} \rfloor$

Otherwise we use the sum-of-products representation.

- The representation is invisible to the Maple user.
 Conversions are automatic.
- POLY polynomials will be displayed in sorted order.
- Packing is fixed by n = #variables.

Degree limits (64 bit word)

	per v	variable	total c	legree
n	#bits	max deg	extra bits	-
6	9	511	1	1023
7	8	255	0	255
8	7	127	1	255
9	6	63	4	1023
10	5	31	9	16383
11	5	31	4	511
12	4	15	12	65535
13	4	15	8	4095
14	4	15	4	255
15	4	15	0	15
16	3	7	13	65535
19	3	7	4	127
20	3	7	1	15

Joris van der Hoven: Do you use the extra bits for the total degree? **My answer:** No, because it would complicate and slow down the code, e.g., polynomial division would require explicit overflow checking.

E.g.
$$b = 2 x^2 y^2 + y^3 \div x^2 y + y^3 = y$$
 with remainder $-y^4$.

Degree limits (64 bit word)

	per	variable	total degree Van			onde
n	#bits	max deg	extra bits	max deg	$deg(det(V_n))$	time(s)
6	9	511	1	1023	15	0.008s
7	8	255	0	255	21	0.008s
8	7	127	1	255	28	0.043s
9	6	63	4	1023	36	0.264s
10	5	31	9	16383	45	43.83s
11	5	31	4	511	55	-
12	4	15	12	65535	66	-
13	4	15	8	4095	78	-
14	4	15	4	255	91	-
15	4	15	0	15	_	_
16	3	7	13	65535	_	-
19	3	7	4	127	_	-
20	3	7	1	15	_	_

Joris van der Hoven: Do you use the extra bits for the total degree? **My answer:** No, we can multiply $f \times g$ in POLY if $\deg f + \deg g < 2^b$. Moreover, polynomial division would require explicit overflow checking. E.g. $x^2y^2 + y^3 \div x^2y + y^3 = y$ with remainder y^4 .

• POLY is in Maple 17!

- POLY is in Maple 17!
- Use extra bits for total degree.

- POLY is in Maple 17!
- Use extra bits for total degree.
- Rethink polynomial factorization for multi-core computers.

factor(p)				ŗ) := exp	and(f \times g)
1	2	4	6	1	2	4	6
97.51s	55.36s	36.85s	31.59s	5.60s	2.50s	1.18s	0.78s
_	1.8x	2.7x	3.1x	_	2.2x	4.7x	7.1×
	1 97.51s –	1 2 97.51s 55.36s	1 2 4 97.51s 55.36s 36.85s	1 2 4 6 97.51s 55.36s 36.85s 31.59s	1 2 4 6 1 97.51s 55.36s 36.85s 31.59s 5.60s	1 2 4 6 1 2 97.51s 55.36s 36.85s 31.59s 5.60s 2.50s	1 2 4 6 1 2 4 97.51s 55.36s 36.85s 31.59s 5.60s 2.50s 1.18s

Intel Core i7 3930K, 6 cores, overclocked @ 4.2GHz

- POLY is in Maple 17!
- Use extra bits for total degree.
- Rethink polynomial factorization for multi-core computers.

	factor(p)				ŗ	:= exp	and(f imes g))
# cores	1	2	4	6	1	2	4	6
real time	97.51s	55.36s	36.85s	31.59s	5.60s	2.50s	1.18s	0.78s
speedup	_	1.8x	2.7x	3.1x	_	2.2x	4.7x	7.1x
Intel Come 17	7 20201/	c	1 1	1 0 4 0 0				

Intel Core i7 3930K, 6 cores, overclocked @ 4.2GHz

Let
$$f(u, v, w, x, y) = \left(\sum_{i,j} (u, v, w) x^i y^j\right) \times \left(\sum_{i,j} (u, v, w) x^i y^j\right)$$
.
Pick $\alpha = (\omega_1, \omega_2, \omega_3) \in \mathbb{Z}_p^3$ and for $k = 1, 2, \cdots$ factor

$$f(\alpha^k, x, y) = \left(\sum c_{i,j}(\alpha^k)x^iy^j\right) \times \left(\sum d_{i,j}(\alpha^k)x^iy^j\right) \bmod p.$$

Conclusion

We will not get good parallel speedup using these

Even with conversions to a more suitable data structure, sequential overhead will limit parallel speedup.

Thank you for attending my talk.

