Gaston, Maple and Mike

Michael Monagan

Center for Experimental and Constructive Mathematics
Simon Fraser University
British Columbia

GNOME 2014, Zurich,
July 4th, 2014

Michael Monagan GNOME 2014, Zurich

Me, Gaston and Maple

May 1982 — Dec 1982 Waterloo, Masters student
Jan 1983 — Aug 1989 Waterloo, PhD student
Aug 1989 — Oct 1995 Zurich, Assistent

Michael Monagan GNOME 2014, Zurich

Me, Gaston and Maple

May 1982 — Dec 1982 Waterloo, Masters student
Jan 1983 — Aug 1989 Waterloo, PhD student
Aug 1989 — Oct 1995 Zurich, Assistent

Gaston gave me this paper for my Masters essay

Shafi Goldswasser and Silvio Micali.
Probabilistic encryption & how to play mental poker keeping
secret all partial information. STOC 82, June 1982

which we implemented in Maple.

Michael Monagan GNOME 2014, Zurich

Gaston's number theory package, the first Maple package.

IN/1 Maple V Release 4 (WMI Campus Wide License)
._INI |/1_. Copyright (c) 1981-1996 by Waterloo Maple Inc. All rights
\ MAPLE / reserved. Maple and Maple V are registered trademarks of
S > Waterloo Maple Inc.

| Type ? for help.

> with(numtheory) ;
Warning, new definition for order

[F, M, cyclotomic, divisors, factorset, fermat, ifactor, imagunit,
isprime, issqrfree, ithprime, jacobi, lambda, legendre, mcombine,
mersenne, mlog, mroot, msqrt, nextprime, order, phi, prevprime,

pprimroot, primroot, quadres, rootsunit, safeprime, sigma, taul

| chose not to pursue cryptography for a PhD.

Michael Monagan GNOME 2014, Zurich

Igi}st Maple retreat, Sparrow lake, summer, 1983

Michael Monagan GNOME 2014, Zurich

What was Gaston's main contribution to Maple?

Michael Monagan GNOME 2014, Zurich

What was Gaston's main contribution to Maple?

Maple's Sum-of-Products representation and hashing of all
subexpressions.

PROD7[x [1 [y[38]z]1]

[PrOD5] y [3] 2] 2]

[PROD7[x [1 [y]2]z]1]

PROD3| x | 3]
A

[sumtn| ¢ [o[o-a[o[6][o[-8][5]1]

Oxy3z —4y322 —6xy°z—8x3—5

Michael Monagan GNOME 2014, Zurich

What was Gaston's main contribution to Maple?

Maple's Sum-of-Products representation and hashing of all
subexpressions.

PROD7[x [1 [y[38]z]1]

[PrOD5] y [3] 2] 2]

[PROD7[x [1 [y]2]z]1]

PROD3| x | 3]
A

[sumtn| ¢ [o[o-a[o[6][o[-8][5]1]

Oxy3z —4y322 —6xy°z—8x3—5

What is the most important operation to make efficient?

Michael Monagan GNOME 2014, Zurich

What was Gaston's main contribution to Maple?

Maple's Sum-of-Products representation and hashing of all
subexpressions.

PROD7[x [1 [y[38]z]1]

[PRODS| y [3 [z | 2 |
[PROD7[x [1 [y]2]z]1]
PROD3| x | 3]
A
[sumtn| ¢ [o[o-a[o[6][o[-8][5]1]

Oxy3z —4y322 —6xy°z—8x3—5

What is the most important operation to make efficient?
Polynomial multiplication (and division).
But monomial multiplication cost > 200 cycles.

Michael Monagan GNOME 2014, Zurich

Singular's representation

[POLY o] o
9
x| 1]
y| 3
z[1]

Michael Monagan

GNOME 2014, Zurich

Our new POLY representation (default in Maple 17)

‘SEQ4‘x‘y‘z‘

[PoLY 12| ¢ [5131] 9 |5032 -4 |4121] -6 [3300] -8 [0000] -5 |

9xy32—4y3z2 —6xy22—8x3 —b.

6 advantages

Michael Monagan GNOME 2014, Zurich

Our new POLY representation (default in Maple 17)

‘SEQ4‘x‘y‘z‘

[PoLY 12| ¢ [5131] 9 |5032 -4 |4121] -6 [3300] -8 [0000] -5 |

9xy3z—4y3z2 —6xy22—8x3 —b.

6 advantages
© It's about 4x more compact.
@ Memory access is sequential.
© Kernel operations become O(#terms), some O(1).
o

Monomial multiplication is one 64 bit integer +
Monomial comparison is one 64 bit integer >

The simpl table is not filled with PRODs.

Division cannot cause exponent overflow in graded lex order.

Michael Monagan GNOME 2014, Zurich

© 0

What will fast multiplication using POLY do for the Maple library?

Intel Core i7 920 2.66 GHz (4 cores) Times in seconds
Maple Maple 16 Magma Singular Mathem

multiply 13 | 1 core 4 cores 2.16-8 3.1.0 atica 7

pa := fa(fa + 1) 95.97 2.14 0.643 13.25 30.64 273.01

divide

qs = ps/fa 192.87 [225 0.767 | 1854 14.96 228.83

factor Hensel lifting is mostly polynomial multiplication!

ps 135751 terms | 2953.54 | 50.29 46.41 | 332.86 404.86 655.49

fa=(l+x+y+z+t)0+1 10626 terms

Parallel speedup for 4 x (f4 + 1) is 2.14 / .643 = 3.33x. Why?

Michael Monagan GNOME 2014, Zurich

What will fast multiplication using POLY do for the Maple library?

Intel Core i7 920 2.66 GHz (4 cores) Times in seconds
Maple Maple 16 Magma Singular Mathem

multiply 13 | 1 core 4 cores 2.16-8 3.1.0 atica 7

pa = fa(fs + 1) 95.97 2.14 0.643 13.25 30.64 273.01

divide

Gs = pa/fa 19287 | 225 0.767 | 1854 14.96 228.83

factor Hensel lifting is mostly polynomial multiplication!

ps 135751 terms | 2953.54 | 50.29 46.41 | 332.86 404.86 655.49

fa=(l+x+y+z+t)0+1 10626 terms

Parallel speedup for f; x (fa + 1) is 2.14 / .643 = 3.33x. Why?
Conversion overhead between POLY and SUM of PRODs!

Michael Monagan GNOME 2014, Zurich

After brainstorming with Roman, | asked Laurent if we could make
POLY the default in Maple. Maple 17 uses POLY if all monomials
in a polynomial with integer coefficients fit in 64 bits - otherwise
we use SUM-of-PRODs. Conversions between POLY and
SUM-of-PRODs are automatic and invisible to the Maple user.

‘SEQ4‘x‘y‘z‘

[PoLY 12| ¢ [5131] 9 |5032 -4 [4121] -6 [3300] -8 [0000] -5 |

Michael Monagan GNOME 2014, Zurich

So we coded POLY for each kernel routine.
Faster at everything except op, map, etc.

command Maple 16 Maple 17 speedup notes

coeff(f, x,20) 2.140 s 0.005 s 420x terms easy to locate
coeffs(f,x) 0.979 s 0.119 s 8x reorder exponents and radix
degree(f, x) 0.073 s 0.003 s 24x stop early using monomial d
diff(f,x) 0.956 s 0.031s 30x terms remain sorted
eval(f,x = 6) 3.760 s 0.175 s 21x use Horner form recursively
expand(2x xxf) 1190 s 0.066 s 18x terms remain sorted
indets(f) 0.060 s 0.000 s — O(1) first word in dag

op(f) 0.634 s 2420 s 0.26x has to construct old structur
for t in f do 0.646 s 2.460 s 0.26x has to construct old structur
taylor(f, x, 50) 0.668 s 0.055 s 12x get coefficients in one pass
type(f, polynom) 0.029 s 0.000 s — O(n) type check variables only

f; 0.162 s 0.000 s — O(n) evaluate the variables

For f with n = 3 variables and t = 10° terms created by
f := expand(mul(randpoly(v,degree=100,dense),v=[x,y,z])):

Michael Monagan GNOME 2014, Zurich

Maple 16 Maple 17

multiply 1 core 4 cores | 1core 4 cores
pa = fa(fs + 1) 2.140 0.643 | 1.770 0.416
factor

ps 135751 terms | 59.27 46.41 | 24.35 12.65
Intel Core i5 750 2.66 GHz 4 cores. Real times in seconds.

fai=(14+x+y+z+1t)0+1 10626 terms

Parallel speedup for f4 x (fs +1) is 1.77/0.416 = 4.2x. How ?

Michael Monagan GNOME 2014, Zurich

Joris van der Hoven: Do you use the extra bits for the total degree?
My answer: No, because ...

| changed my mind. Roman Pearce recoded everything for Maple 18.

per variable total degree V, = det n X n Vandermonde

n | #bits maxdeg | #bits maxdeg | deg Maple 16 17 18
7 8 255 8 255 21 0.012s 0.005 0.004
8 7 127 8 255 28 0.093s 0.027 0.026
9 6 63 10 1023 36 1.35s 0.218 0.150
10 5 31 14 16383 45 15.95s 25.44 1.57
11 5 31 9 511 55 - - 18.87
12 4 15 16 65535 66 236.4
13 4 15 12 4095 78 -
14 4 15 8 255 91

15 4 15 4 15 | 105

16 3 7 16 65535 | 120

Michael Monagan GNOME 2014, Zurich

Maple retreat, Sparrow lake, circa 1992

Thank you Gaston for Waterloo, Zurich and Maple. Mike.

Michael Monagan GNOME 2014, Zurich

Notes on integration of POLY for Maple 17

Given a polynomial f(xi, x2, ..., X»), we store f using POLY if
(1) f is expanded and has integer coefficients,
(2) d >1and t > 1 where d = degf and t = #terms,

(3) we can pack all monomials of f into one 64 bit word, i.e. if

6
d < 25 where b = {nflj

Otherwise we use the sum-of-products representation.

@ The representation is invisible to the Maple user.
Conversions are automatic.

@ POLY polynomials will be displayed in sorted order.
o Packing is fixed by n = #variables.

@ Maple 18 uses remaining bits for total degree.

Michael Monagan GNOME 2014, Zurich

Parallel multiplication using a binary heap.

Local Heaps

oo / A\
f

Target architecture One thread per core.

Threads write to a finite circular buffer.
0 N-1

I | |

r w

rmod N ﬁwmodN

Threads try to acquire global heap as buffer fills up to balance
load.

Michael Monagan GNOME 2014, Zurich

