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Me, Gaston and Maple

May 1982 — Dec 1982 Waterloo, Masters student
Jan 1983 — Aug 1989 Waterloo, PhD student
Aug 1989 — Oct 1995 Zurich, Assistent
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Me, Gaston and Maple

May 1982 — Dec 1982 Waterloo, Masters student
Jan 1983 — Aug 1989 Waterloo, PhD student
Aug 1989 — Oct 1995 Zurich, Assistent

Gaston gave me this paper for my Masters essay

Shafi Goldswasser and Silvio Micali.
Probabilistic encryption & how to play mental poker keeping
secret all partial information. STOC 82, June 1982

which we implemented in Maple.
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Gaston's number theory package, the first Maple package.

IN/1 Maple V Release 4 (WMI Campus Wide License)
._INI |/1_. Copyright (c) 1981-1996 by Waterloo Maple Inc. All rights
\ MAPLE / reserved. Maple and Maple V are registered trademarks of
S > Waterloo Maple Inc.

| Type ? for help.

> with(numtheory) ;
Warning, new definition for order

[ F, M, cyclotomic, divisors, factorset, fermat, ifactor, imagunit,
isprime, issqrfree, ithprime, jacobi, lambda, legendre, mcombine,
mersenne, mlog, mroot, msqrt, nextprime, order, phi, prevprime,

pprimroot, primroot, quadres, rootsunit, safeprime, sigma, taul

| chose not to pursue cryptography for a PhD.
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Igi}st Maple retreat, Sparrow lake, summer, 1983
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What was Gaston's main contribution to Maple?
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What was Gaston's main contribution to Maple?

Maple's Sum-of-Products representation and hashing of all
subexpressions.

PROD7[ x [1 [ y[38]z]1]

[PrOD5] y [3 ] 2] 2]

[PROD7[ x [1 [y ]2 ]z]1]

PROD3| x | 3 ]
A

[sumtn| ¢ [o[o-a[o[6][o[-8][5]1]

Oxy3z —4y322 —6xy°z—8x3—5

Michael Monagan GNOME 2014, Zurich



What was Gaston's main contribution to Maple?

Maple's Sum-of-Products representation and hashing of all
subexpressions.

PROD7[ x [1 [ y[38]z]1]

[PrOD5] y [3 ] 2] 2]

[PROD7[ x [1 [y ]2 ]z]1]

PROD3| x | 3 ]
A

[sumtn| ¢ [o[o-a[o[6][o[-8][5]1]

Oxy3z —4y322 —6xy°z—8x3—5

What is the most important operation to make efficient?
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What was Gaston's main contribution to Maple?

Maple's Sum-of-Products representation and hashing of all
subexpressions.

PROD7[ x [1 [ y[38]z]1]

[PRODS| y [ 3 [ z | 2 |
[PROD7[ x [1 [y ]2 ]z]1]
PROD3| x | 3 ]
A
[sumtn| ¢ [o[o-a[o[6][o[-8][5]1]

Oxy3z —4y322 —6xy°z—8x3—5

What is the most important operation to make efficient?
Polynomial multiplication (and division).
But monomial multiplication cost > 200 cycles.
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Singular's representation

[POLY o] o
9
x| 1]
y| 3
z[ 1]
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Our new POLY representation (default in Maple 17)

‘SEQ4‘x‘y‘z‘

[PoLY 12| ¢ [5131] 9 |5032 -4 |4121] -6 [3300] -8 [0000] -5 |

9xy32—4y3z2 —6xy22—8x3 —b.

6 advantages
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Our new POLY representation (default in Maple 17)

‘SEQ4‘x‘y‘z‘

[PoLY 12| ¢ [5131] 9 |5032 -4 |4121] -6 [3300] -8 [0000] -5 |

9xy3z—4y3z2 —6xy22—8x3 —b.

6 advantages
© It's about 4x more compact.
@ Memory access is sequential.
© Kernel operations become O(#terms), some O(1).
o

Monomial multiplication is one 64 bit integer +
Monomial comparison is one 64 bit integer >

The simpl table is not filled with PRODs.

Division cannot cause exponent overflow in graded lex order.
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What will fast multiplication using POLY do for the Maple library?

Intel Core i7 920 2.66 GHz (4 cores) Times in seconds
Maple Maple 16 Magma  Singular Mathem

multiply 13 | 1 core 4 cores 2.16-8 3.1.0 atica 7

pa := fa(fa + 1) 95.97 2.14 0.643 13.25 30.64 273.01

divide

qs = ps/fa 192.87 [ 225  0.767 | 1854 14.96  228.83

factor Hensel lifting is mostly polynomial multiplication!

ps 135751 terms | 2953.54 | 50.29  46.41 | 332.86  404.86  655.49

fa=(l+x+y+z+t)0+1 10626 terms

Parallel speedup for 4 x (f4 + 1) is 2.14 / .643 = 3.33x. Why?
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What will fast multiplication using POLY do for the Maple library?

Intel Core i7 920 2.66 GHz (4 cores) Times in seconds
Maple Maple 16 Magma  Singular Mathem

multiply 13 | 1 core 4 cores 2.16-8 3.1.0 atica 7

pa = fa(fs + 1) 95.97 2.14 0.643 13.25 30.64 273.01

divide

Gs = pa/fa 19287 | 225 0.767 | 1854 14.96 228.83

factor Hensel lifting is mostly polynomial multiplication!

ps 135751 terms | 2953.54 | 50.29  46.41 | 332.86  404.86  655.49

fa=(l+x+y+z+t)0+1 10626 terms

Parallel speedup for f; x (fa + 1) is 2.14 / .643 = 3.33x. Why?
Conversion overhead between POLY and SUM of PRODs!
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After brainstorming with Roman, | asked Laurent if we could make
POLY the default in Maple. Maple 17 uses POLY if all monomials
in a polynomial with integer coefficients fit in 64 bits - otherwise
we use SUM-of-PRODs. Conversions between POLY and
SUM-of-PRODs are automatic and invisible to the Maple user.

‘SEQ4‘x‘y‘z‘

[PoLY 12| ¢ [5131] 9 |5032 -4 [4121] -6 [3300] -8 [0000] -5 |
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So we coded POLY for each kernel routine.
Faster at everything except op, map, etc.

command Maple 16  Maple 17 speedup  notes

coeff(f, x,20) 2.140 s 0.005 s 420x terms easy to locate
coeffs(f,x) 0.979 s 0.119 s 8x reorder exponents and radix
degree(f, x) 0.073 s 0.003 s 24x stop early using monomial d
diff(f,x) 0.956 s 0.031s 30x terms remain sorted
eval(f,x = 6) 3.760 s 0.175 s 21x use Horner form recursively
expand(2x xxf) 1190 s 0.066 s 18x terms remain sorted
indets(f) 0.060 s 0.000 s — O(1) first word in dag

op(f) 0.634 s 2420 s 0.26x has to construct old structur
for t in f do 0.646 s 2.460 s 0.26x has to construct old structur
taylor(f, x, 50) 0.668 s 0.055 s 12x get coefficients in one pass
type(f, polynom) 0.029 s 0.000 s — O(n) type check variables only

f; 0.162 s 0.000 s — O(n) evaluate the variables

For f with n = 3 variables and t = 10° terms created by
f := expand(mul(randpoly(v,degree=100,dense),v=[x,y,z])):
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Maple 16 Maple 17

multiply 1 core 4 cores | 1core 4 cores
pa = fa(fs + 1) 2.140 0.643 | 1.770 0.416
factor

ps 135751 terms | 59.27 46.41 | 24.35 12.65
Intel Core i5 750 2.66 GHz 4 cores. Real times in seconds.

fai=(14+x+y+z+1t)0+1 10626 terms

Parallel speedup for f4 x (fs +1) is 1.77/0.416 = 4.2x. How ?
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Joris van der Hoven: Do you use the extra bits for the total degree?
My answer: No, because ...

| changed my mind. Roman Pearce recoded everything for Maple 18.

per variable total degree V, = det n X n Vandermonde

n | #bits maxdeg | #bits maxdeg | deg Maple 16 17 18
7 8 255 8 255 21 0.012s 0.005 0.004
8 7 127 8 255 28 0.093s 0.027 0.026
9 6 63 10 1023 36 1.35s 0.218 0.150
10 5 31 14 16383 45 15.95s 25.44 1.57
11 5 31 9 511 55 - - 18.87
12 4 15 16 65535 66 236.4
13 4 15 12 4095 78 -
14 4 15 8 255 91

15 4 15 4 15 | 105

16 3 7 16 65535 | 120
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Maple retreat, Sparrow lake, circa 1992

Thank you Gaston for Waterloo, Zurich and Maple. Mike.
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Notes on integration of POLY for Maple 17

Given a polynomial f(xi, x2, ..., X»), we store f using POLY if
(1) f is expanded and has integer coefficients,
(2) d >1and t > 1 where d = degf and t = #terms,

(3) we can pack all monomials of f into one 64 bit word, i.e. if

6
d < 25 where b = {nflj

Otherwise we use the sum-of-products representation.

@ The representation is invisible to the Maple user.
Conversions are automatic.

@ POLY polynomials will be displayed in sorted order.
o Packing is fixed by n = #variables.

@ Maple 18 uses remaining bits for total degree.
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Parallel multiplication using a binary heap.

Local Heaps

oo / A\
f

Target architecture One thread per core.

Threads write to a finite circular buffer.
0 N-1

I | |

r w

rmod N ﬁwmodN

Threads try to acquire global heap as buffer fills up to balance
load.
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