Parallel Sparse Polynomial Interpolation over
Finite Fields

Michael Monagan

Department of Mathematics,
Simon Fraser University

PASCO, July 21-23, 2010

This is a joint work with Mahdi Javadi

The Problem

We want to compute g = ged(fi, i) € Zp[xi, . . ., xn] for some prime p.

We choose p to be a 31.5 bit prime on a 64 bit machine
(a C limitation, one could use a 63 bit prime).

For a sparse g, we need to do sparse interpolation.

In general, the target polynomial f is represented with a black box.

(ca1y...,cn) €F" flaa,...,an) €F

Zippel in 1979 presented a probabilistic method to determine g given the
black box B which computes:

ged(F1(x, o, ..., an), b(xt, a2,...,an)) € Zp[xi]

The Ben-Or/Tiwari Algorithm (1988) for Z

€in

eil.X;r'zn_Xn.

Let f = Z,-t:1 ¢iM; where ¢; € Z and M; = x;

Let T > t be a bound on the number of non-zero terms in f.

Let d > deg(f) be a bound on degree of f.

Step1 Fori=0...2T —1 compute v; = f(2/,3 5" ... p}).

Step 2 Compute the linear generator A(z) for the sequence vg, vi, ..., vaT_1
using the Berlekamp/Massey algorithm. Theorem:

t

Nz) =[]z = Mi(2,3,5,....pn)).
i=1
Step 3 Compute the integer roots of A(z): my,..., m;.
Step 4 Determine the degrees of each monomial by trial division in Z.

Step 5 Solve for the coefficients c;.

Ben-Or/Tiwari Algorithm (contd.)

Ben-Or/Tiwari algorithm is deterministic and does 2T probes to the black box.

For characteristic p: requires p > max; M;(2,3,5, ..., pn) < p,f].

In 1990 Huang and Rao replaced the primes 2,3,5, ... by irreducible
polynomials y — a; in GF(q)[y].

® Does O(ndt2) probes = worse than Zippel's algorithm.
® Also, need to factor a bivariate polynomial GF(q)[x, y].

In 2000 Kaltofen, Lee and Lobo presented a hybrid of Zippel's algorithm with
Ben-Or/Tiwari algorithm.

Their algorithm is a modification of Zippel's algorithm:

® For univariate interpolation they race Newton's interpolation algorithm
with univariate Ben-Or/Tiwari algorithm.

® They use early termination and hence their algorithm is Monte Carlo.

The Discrete Logs Method

In 2006, Giesbrecht, Labahn and Lee presented a variation of Ben-Or/Tiwari for
numerical coefficients. They evalaluate at powers of primitive elements in C of
relatively prime order. We observe that this approach can also work in Z, as follows.

Pick the prime p = g1 X g2 X --- X qn + 1 where g; > d and gcd(gi, q;) = 1.

p=1
Pick a generator w of Z; and set w; =w % .
Evaluate at f(w{, WQ/‘, o, wh) for 0 < i< 2T — 1. Hence
-1 -1
d, Ldi1+"'+pTdfn
n

d- 2 X
m; = Mi(wy, ..., wa) = w]" X w," X ox win = w @

—1 -1 -1
= log, mj = %dil"l'""‘l‘pqijdi"‘r"""%din

To compute dj;, solve this modulo g;.

® The discrete log is efficient; we choose p — 1 with no large prime factors.

® Requires p > (d + 1) which may force multi-precision arithmetic.

Comparison Chart

If we can choose the prime p:

Alg.

Probes

Deterministic? | Parallel? Prime
Ben-Or/Tiwari 1988 Oo(t) Las Vegas Yes P> p,‘,1
Huang/Rao 1990 O(dt?) Las Vegas Yes p > 8d%t?
Discrete Logs O(t) Las Vegas Yes p> (d + l)n
Zippel 1979 O(ndt) Monte-Carlo Some p> nt
Kaltofen et. al. 2000 O(nt) Monte-Carlo Less p > ndt
Javadi/Monagan 2010 | O(nt) Monte-Carlo Yes! p > nt?

Three problems:

Example

® Medium: n=10,d = 20, t = 102.
® Big: n=15,d =40,t = 10%.
® Very Big: n=20,d = 100, t = 106.

Alg. Prime Medium | Big | Very Big
Ben-Or/Tiwari p>pd 2% 2223 2615
Huang/Rao p > 8d°t? 227 241 256
Discrete Logs p>d" 244 281 2133
Zippel p > nt 210 217 224
Kaltofen et. al. p > ndt 214 223 231
Javadi/Monagan | p>> nt? 217 231 244

Our New Algorithm

The Algorithm:
1. Choose evaluation points o, ..., an at random from Zj.
2. Evaluate f(of,...,al) for i=0...2T — 1 and compute Ao(z) € Zp[z].
3. Find the roots of Ag(z) : 1, ..., re using Rabin’s algorithm. If deg(A¢(2)) =
we have {r,...,re} = {my,...,m:} where mj = Mij(aq,...,an).
4. For each x; do the following in parallel:
4.1 Choose j3; at random from Zj such that (53;/c;) has order > d.

4.2 Evaluate f(af,... al) for i =0...2t — 1 and compute A;(z).

b ,JI:7 AR
Let 7y, ..., 7 denote the roots of Aj(z) and m; = Mj(c, ..., B}, ...,).

We have {r,..., 7t} = {y,...,m:}. Observe:
i (/6’)"" = =Dy m = A)S) —o.
m; o o

43 Fork=1...tdo
431 Fors=0...d doif /\J-((%)s re) =0 then dij = s w.h.p.
J

Our New Algorithm (contd.)

Our algorithm can only work if all monomial evaluations (M;(ay, ..., an)) are distinct.

Theorem 1: For random evaluations g, ..., an, the probability that two or more
monomials evaluate to the same value is at most: (;) %.
Proof: Consider

A= H (Mi(xq, - - 3n) = Mi(x1, - -, xn)) -

1<i<j<t
We have A(az, ..., an) = 0 iff two monomial evaluations collide.
Schwartz-Zippel lemma: If f € K[x1,...,xn] is non-zero ry,. .., r, are chosen at

random from any subset S of a field K then

deg f

Prob(f(ry,...,m)=0) < .
5|

We have d > deg f and thus deg(A) < (;)d and |S|=p—1.
Theorem 2: If deg(/Ag) = deg(A;) = t, then the probability that we will not be able to

2
uniquely compute the degrees in x; is at most %.

Our New Algorithm (contd.)

We obtain the following bipartite graph. r; is connected to 7; with the weight e iff

- Bj
nj = ri(5;)"

Our New Algorithm (contd.)

Theorem: If the bipartite graph G does not have a unique perfect matching, with one
more set of evaluations (2t more probes) we can uniquely compute dj;, the degrees of
all monomials in x;.

Remarks:

® To compute the degrees of the monomials in the last variable x,, we do not
need to do any more probes to the black box. We have

di(n—1) d;

/i in
mj =" X Xa, X ap”.
® Number of Probes: Between 2nt and 4nt.
® One can compute the degrees of the monomials in xq,...,x,_1 in Parallel.

® |If the number of terms t is known, our algorithm is Las Vegas.
If a bound T > t is given, the algorithm is Monte Carlo.

® |ike the racing algorithm, our algorithm is not sensitive to a bad degree bound
(unlike Zippel's algorithm).

Benchmarks

® Random polynomials with approximately 27 terms, n = 12 variables and total
degree 30.

® Degree bound: d = 30.

i t New Algorithm Zippel ProtoBox
Time (4 cores) | Probes Time Probes Probes
1 2 0.00 (0.00) 44 0.03 1736 67
2 4 0.00 (0.00) 96 0.04 3038 121
3 8 0.00 (0.00) 192 0.08 5053 250
4 15 0.00 (0.00) 360 0.20 10230 470
5 32 0.02 (0.01) 768 0.54 18879 962
6 63 0.04 (0.02) 1512 1.79 36735 1856
7 127 0.15 (0.05) 3048 6.10 69595 3647
8 255 0.54 (0.17) 6120 22.17 134664 7055
9 507 2.01 (0.60) 12168 83.44 259594 13440
10 1019 7.87 (2.33) 24456 316.23 498945 26077
11 | 2041 31.0 (9.16) 48984 1195.13 952351 DNF
12 4074 122.3 (35.9) 97776 4575.83 1841795 DNF
13 | 8139 484.6 (141.) 195336 >10000 - DNF

Benchmarks (contd.)

i t 1 core 4 cores

time roots solve probes | time1 time 2 speedup
6 63 0.04 0.01 0.00 0.04 0.02 0.02
7 127 0.15 0.02 0.00 0.15 0.06 0.05 (2.5x%)
8 255 0.54 0.05 0.00 0.41 0.18 0.17 (3x)
9 507 2.02 0.18 0.02 1.48 0.67 0.60 (3.02x)
10 | 1019 | 7.94 0.65 0.08 5.76 2.58 2.33 (3.08x)
11 | 2041 31.3 2.47 0.32 22.7 9.94 9.16 (3.15x)
12 | 4074 | 122.3 9.24 1.26 90.0 38.9 35.9 (3.14x)
13 | 8139 | 484.6 34.7 5.02 357.3 152.5 141.5 (3.17x)

Amdahl’s law: for i = 13, the maximum speedup on 4 cores is
Tot
Tot—Seq =3.21

+ Seq

F#cores

Thank you!

We are currently coding arithmetic and root finding in Zp[x] for 63 bit primes for our

algorithm for large t and so we can implement the Discrete Logarithm method for
larger n.

Alg. # Probes Deterministic? Parallel? Prime
Ben-Or/Tiwari 1988 O(t) Las Vegas Yes p>pd
Huang/Rao 1990 O(dt2) Las Vegas Yes p > 8d?t2
Discrete Logs o(t) Las Vegas Yes p>(d+1)"
Zippel 1979 O(ndt) Monte-Carlo Some p > nt
Kaltofen et. al. 2000 O(nt) Monte-Carlo Less p > ndt
Javadi/Monagan 2010 O(nt) Monte-Carlo Yes p > nt2

