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Let f(x) € Fp[x] for p prime.
Suppose we know f(x) = H7:1(X — ;) with o € F.

Problem 1: Compute the roots «a; of f(x).
Using CZ (1981) — implemented in Maple by MBM and Magma by AS.

Using TG (2015) - requires p = 02X + 1 with 0 € O(d), e.g. p=5-2% + 1.

Problem 2: Let Sy, B2, ..., B4 € Fp.
Evaluate f(3;) for 1 < i < d (multi-point evalution).
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Let f(x) € Fp[x] for p prime.
Suppose we know f(x) = H7:1(X — ;) with o € F.

Problem 1: Compute the roots «a; of f(x).
Using CZ (1981) — implemented in Maple by MBM and Magma by AS.
Using TG (2015) — requires p = 02X + 1 with o € O(d), e.g. p=5-25 + 1.

Problem 2: Let Sy, B2, ..., B4 € Fp.
Evaluate f(3;) for 1 < i < d (multi-point evalution).

Evaluate | Ccz ‘ TG
O(M(d)logd) | O(M(d)logdlogp) | O(M(d)log p)

Number of arithmetic operations in Fp,.

@ CZ and TG are Las Vegas algorithms.
e TG is O(log d) times faster than CZ. Is TG really faster than CZ in practice?
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@ What is a Las Vegas algorithm?

@ The Graeffe transform

@ The Tangent-Graeffe (TG) algorithm

@ Improving the constant by a factor of 2

o Comparison of new C implementation with Magma's CZ implementation
@ How big can the method go?

o Current work



What is a Las Vegas algorithm?

Input: 1. a problem instance X of size n from a set S
2: a sequence of k random bits where k = f(n)
3:aconstant 0 < g <1
Output: a solution y with probability g or FAIL with probability 1 — ¢

If g = 0.5, on average it will take 2 attempts to obtain a solution.

For X = f(x) € F,[x] k could depend on deg(f) and/or log p.
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The Graeffe Transform

Definition: Let P(z) € F,[z] of degree d > 0. The Graeffe transform of P is
G(P) = P(2)P(=2)l=z € Fp[2]
Lemma 1: If P(z) = [T, (z — ;) then G(P) =[], (z — o?).

Main idea: Let p = 02k + 1. Pick r = 2V such that s = (p — 1)/r € [2d, 4d).
d

1: Compute P = GM(P). Then P = H(z —al).
i1

Observe s=(p—1)/r = p—1=rs = (a})° = 1 by Fermat's theorem.

2: Pick w with order s in F,. NB: s € O(d)

Compute {w' : P(w') =0 for 0 < i < s} ={a!:1< i< d} using multi-point evaluation.

Okay so how to we get «; from af 7
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The Tangent Graeffe transform.

Lemma 2: Let P(z) = P(z+¢€) mod € € F,[e, z]/(¢?). Then
1 /S(ZN) = P(2) + P'(2)e
2 G(P(2)) = P(2)P(=2)|.=z + (P(2)P'(=2) + P(—=2)P"(2))| .=z €

three polynomial multiplications

3 G (P(z)) = A(z) + B(z)e where A(z) = GIM(P)

/

BA'(B
B(B)

Lemma 3: If A(8) =0 and A'(8) # 0 then a = r is a root of P(z).

Compute GV (P( +€)) = A(z) + B(z)e with 3N multiplications
Compute A(w'), A'(w'), B(w') for 0 < i < s and apply Lemma 3.
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What's going on with the roots under GV ?
Recap: A(z) = GM(P) = []{(z — af) where r = 2V,
How many of the roots o are single roots of GN(P) ?

Example: Let p =41 and « = [7,10,20,21,30,35] so d =6
What happens when we square these roots N = 1,2, 3 times?

N M (a) s ed/s
1 [8,18,31,31,39,36] 20 2d<s<4d 0.741
2 [23,37,18,18,4,25] 10 d<s<2d 0.549
3 [37,16,37,37,16,10] 5 d/2<s<d 0301

Problem: if & =[1,-1,2,-2,3,—3] we get G(«a) =[1,1,4,4,9,9].
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What's going on with the roots under GV ?
Recap: A(z) = GM(P) = []{(z — af) where r = 2V,
How many of the roots o are single roots of GN(P) ?

Example: Let p =41 and « = [7,10,20,21,30,35] so d =6
What happens when we square these roots N = 1,2, 3 times?

N M (a) s ed/s
1 [8,18,31,31,39,36] 20 2d<s<4d 0.741
2 [23,37,18,18,4,25] 10 d<s<2d 0.549
3 [37,16,37,37,16,10] 5 d/2<s<d 0301

Problem: if & =[1,-1,2,-2,3,—3] we get G(«a) =[1,1,4,4,9,9].

Solution: Pick 7 € F, at random and set P = P(z + 7).
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The Tangent Graeffe Algorithm

Input: P € F,[z] of degree d with d distinct roots in F, and p = 2% 4+ 1 with 2¥ > 4d.

Output: the set {a1,...,aq} of roots of P.

1.

IR

~

9.
10.

If d =0 then return ¢.
Let s € [2d, 4d) such that s|(p — 1) and set r := (p — 1)/s = 2".

Pick 7 € F,, at random and compute P* := P(z+7) € Fplz] ... ..

Compute P := P*(z) + P*(2)'e. /| = P*(z+¢€) mod €2.

Fori=1,...,Nset P:=G(P)(z) mod €® ... ... ... ...t

Let w have order s in F,. Let P(z) = A(z) + B(z)e.

Evaluate A(w'), A'(w') and B(w') for 0 < i < s using Bluestein ......................

If P(7) =0 then set S := {7} else set S := ¢.
For 8 € {1,w,... ,w(s_l)}
if A(B)=0and A'(B) £0set S:=SU{rBA(8)/B(B)+}.

Compute Q =[], cs(z—a)andset R=P/Q ...,

Recursively determine the set of roots S’ of R and return SU S’.

For s € [2d,4d), on average, we get at least e~ /2 = 61% of the roots.
Total cost O(NM(d) + M(d)logd + M(s)) = O(M(d)log(p/s) + M(d) log d).
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Improving the constant in G(P) and G(N)(P)

G(P) = P(2)P(=2)|,_ys and d =degP

Theorem

We can compute G(P) in F(2d) + F(d) = 1/2M(d). Note: M(d) = 3F(2d) + O(d).
We can compute GN)(P) in (2N + 1)F(d) = (1/3N + 1/6)M(d).

This compares with 2/3M(d) and 2/3NM(d) in [GHL 2015].

In the FFT, if w" = 1 and n = 2% then w2+ = —f so
FFT(P(z)) = [P(1),P(w),P(w?),...,P(~1), P(—w), P(—w?),.. ]
FFT(P(=2)) = [P(-1),P(~w),P(—w?),...,P(1), P(w), f(w?),..]

Also FFT(H := P(z)P(—z)) is
[H(1), H(w), H(w?), ..., H(1), H(w), H(w?),...]

We can compute the inverse FFT with an FFT of size d.
Cost of G(P) : F(2d) +0+ F~1(d) < 1.5F(2d) < 1/2M(d).
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Tangent-Graeffe v. Cantor-Zassenhaus

We implemented TG in C using the FFT for G(P) and for arithmetic in F,[z].

Table: Sequential timings in CPU seconds for p = 3 -29-2% + 1 and using s € [2d, 4d). Intel Xeon E5 2660
CPU, 8 cores, 2.2 GHz base, 3.0 GHz turbo, 64 gigabytes RAM

Our sequential TG implementation in C Magma CZ timings

d total | first %roots GUY  step6 stepd | V2.25-3 V2.25-5
22 _110.11s | 0.07s 69.8% 0.04s 0.02s 0.01ls 23.22s 8.43
213_1]0.22s | 0.14s 69.8% 0.09s 0.03s 0.01ls 56.58s 18.94
2% _ 1| 048s | 0.31s 68.8% 0.18 0.07s 0.02s 140.76s 44.07
215 1| 1.00s | 0.64s 69.2% 0.38s 0.16s 0.04s 372.22s 103.5
216 _1 | 2.11s | 1.36s 68.9% 0.78s 0.35s 0.10s 1494.0s 234.2
217 —1 | 4.40s | 2.85s 69.2% 1.62s 0.74s 0.23s 6108.8s 534.5
218 _ 1] 9.16s | 5.91s 69.2% 3.33s 1.53s 0.51s NA 1219.
219 _ 1] 192s | 12.4s 69.2% 6.86s 3.25s 1.13s NA 28009.
220 _1 | 39.7s | 25.7s 69.2% 14.1s 6.77s 2.46s NA 6428.

Conclusion: TG is a lot (100 times) faster than CZ.
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9
Can we factor P(z) = z*% + ... inFy[z] for p=5-2% 17
Note: we need 8 gigabytes for the input and 8 gigabytes for the output.



How big can the method go?

9
Can we factor P(z) = z*% 4 ... in F[z] for p=5-2% 417
Note: we need 8 gigabytes for the input and 8 gigabytes for the output.

Succeeded in June 2020: time = 3,715 secs, space = 121 GB
Used an Intel E5 2680 CPU with 10 cores and 128 GB RAM.
Parallel implemenation in Cilk C.

To evaluate A(w'), A'(w'), B(w') for 0 < i< s=5-2%

Space: 3s + 3n = 504GB with n = 2K > 2s for M(s) using Bluestein.

Use s € [2d,4d) instead of s € [4d, 8d).

For s = 5-229 a DFT(5 - 22°) can be done using 5F(22°) + 22°F(5) + O(s).
Space: 3s + 1.2s = 84GB.
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We are trying to determine the constants in the complexities assuming the FFT model in order to
determine how much faster CZ is than TG.

Tangent-Graeffe cost for s € [\d, 2)\d).

G(N)(P) ‘ Q = H(z—a)
a€S
< e/ M(d)logy & +... | < tM(d)logyd + ...

Cantor-Zassenhaus cost

h = (z+a)P~1/2 mod P(z) | g = gcd(h(z) — 1, P(2))
< IM(d)log, Zlogyd+... | < 3M(d)logsd +...
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