MAPL E Notesfor Computer Al r

Michael Monagan
Department of Mathematics
Simon Fraser University
August, 1998.
Updated August 2002, September 2004, January 2007.

0> restart;

| These notes are for Maple V Release 8. They are platform independent, i.e., they are the same for the
Macintosh, PC, and Unix versions of Maple. These notes should be backwards compatible with Maple 6 and
Maple 7 and forwards compatible with Maple 9 and 9.5 and 10.

= Mapleasa Calculator

Input of anumerical calculation uses +, -, *, /, and ” for addition, subtraction, multiplication, division, and
exponentiation respectively.

> 14+2*3-2;

5
> 2N 3:

8
> 120/ 105;

8

7

Because the input involved integers, not decimal numbers, Maple calcul ates the exact fraction when there
isadivision, automatically cancelling out the greatest common divisor (GCD). In thiscasethe GCD is
15, which you can calculate specifically as
> igcd(120, 105);

15
Observe that every command ends with asemicolon; Thisisagramatical requirement of Maple. If you
forget, Maple will assume that the comand is not complete. Thisalows you to break long commands
acrossaline. For example
> 1+42*3/
> (2+3);

11

5
We are not going to use decimal numbers very much in this course as all encryption and decryption
calculations that we do will involve integers. However, here is how you would do some decimal
calculations. The presence of adecimal point . in a number means that the number is a decimal number
and Maple will, by default, do all calculationsto 10 decimal places.

> 120/ 105. 0;

1.142857143
> sqrt(2.0);

1.414213562
> sqrt(2);

2
Notice the difference caused by the presence of adecimal point in these examples. Now, if you have

input an exact quantity, like the\/E above, and you now want to get a numerical value to 3 decimal
digits, use the evalf command to evaluate to floating point. Use the % character to refer to the previous

U Maple output.
N> eval f(%3);

141

| Toinput aformula, just use asymbol, e.g. x and the arithmetic operators and functions known to Maple.
U For example, hereisaquartic polynomial inx.
> XMN-3*x+2;
x'-3x+2
We are going to use this polynomial for afew calculations. We want to give it the namef so we can refer
U toit later. We do this using the assignment operation in Maple as follows
n>f = x"4-3*x+2;
| fi=x*-3x+2
[The namefisnow avariable. It refersto the polynomial. Hereisit’svalue
1> f
i X' =3x+2
[To evaluate this as afunction at the point x = 3 use the eval command as follows
1> eval (f, x=3);
74

The following commands differentiatef with respect to x and factor f into irreducible factors over the field

| of rational numbers.
N> diff(f,x);

4%°-3
> factor(f);
(x—l)(x3+x2+x—2)
Y ou can graph functions using the plotting commands. The basic syntax for the plot command for a
I function of one variableisillustrated as follows:

I
n> plot(f,x=0.5..1.5);

2.5

1.5

0.5

In the graph | can see alocal minimum near x=0.9. We can find this point using calculus. The command
fsolve(f(x)=0, x), on input of a polynomial f(x) computes 10 digit numerical approximations for the real
| roots of f(x).

N> diff(f,x)=0;

] 4x*-3=0

N> fsolve(diff(f,x)=0,x);

i 0.9085602964

] Here are some functions which we differentiate and integrate to try Maple out.

> f = 2*sin(t)*exp(-2*t);

. (=21)
f:=2dn(t)e

> integrate(f,t);

2 (=2

——e v coqt) — 2 sin(t) e(_Zt)
5 5

> integrate(f,t=0..1);

2 (2 1 4 1 (-2)+2
| 5e coq1) 5sm()e 5
N> g := x*exp(-x"2)/1 n(1+x);
(%)
_ Xxe
I 97 I +x)

]
\Y

>
I

I ntegrate(g, x);

[

()
e

h:= In(L+x) dx
That means Maple could not integrate it.
> di ff(h, x);
(%)
Xe
In(1+Xx)
>9g :=diff(g, x);
2 2 2
B 7 2™ xe)
97 In@+x) T In@+x) " In(1+x)? (L +x)
>qg :=sinmplify(g);
2
e En@) = In(£ x) x4 252 In(1 +X) + 253 In(1+X) +)
- In(L +x)2 (1 +x)
> integrate(g,X);
(%)
Xe
In(1+x)

We have used the name f as variable to refer to formulae and the symbols x for an uknown in a formula

Often you will have assigned to a name like we have done here to f but you want now to use the namef as

asymbol again, not asavariable. You can unassign the value of a name as follows
> f:

. (-21)
, 2sin(t)e
n>f :="f";
i fi=f
n> f;
i f
L 0=
B Integers

Here are some commands which do integer calculations that we will usein the course. Integersin Maple
are not limited to the precision of the hardware on your computer. They are limited by an internal limit of
Maple to approximately half amillion digits. Any calculations that you do with large integers though will

| take longer for larger integers. Hereis2'® .

> 27100;

1267650600228229401496703205376
The command irem(a,b) computes the integer remainder of adivided by b. The command iquo(a,b)

I computes the integer quotient of adivided by b. For example

>a = ;
b :=7;
a:=20
b:=7
>r :=1irema,b);
r.=6
> g :=1quo(a,b);

] It should bethe casethat a=bq+ r. Let'scheck
1>a = b*q + r;
20=20
The commands igcd(a,b) and ilcm(a,b) compute the greatest common divisor and least common multiple

U of integersaand b, respectively.
1> i1gcd(6, 4);

2
N> ilcm6,4);

12
The command igcdex(a,b,’s,’'t’)) outputsg=GCD(a, b). It asoassigns st integers satisfying the
equationsa+tb=g and &atisfying| s|<|b| and|t|<|a|. So this command implements the extended
I Euclidean algorithm. For example

1> g :=igcdex(3,5,°'s’,'t’);
| g=1
1> s;
| 2
N> t;
| -1
1> s*3+t*5;

1

The commandisprime(n) outputs false if niscomposite and true if nis prime. The command ifactor(n)
I computes the integer factorization of an integer. For example
> isprinme(997);
true
m> isprinme(1001);
false
n> ifactor(1001);
(7) (11) (13)

Now, if you are not sure what a command does, or how to use it, you can use Mapl€e' s on-line help
system. Y ou input 2command and then areturn. Try the following
> ?isprinme
> ?ifactor
Y ou should get a window with some information about the command and how to use it. Almost all of the
on-line help files have examples. If you don’'t know the name of the command, you can use the help
U browser to search for the command - see the Help menu at the top right of the window.
For the algorithms based on the Chinese remainder theorem we will need a source of primes. Say 32 bit
primes. The command nextprime(n) outputs the first prime greater than or equal to n and the command
prevprime(n) finds the first prime less than or equal to n.
>p = prevprinme(2"32);

p := 4294967291
>p = prevprinme(p);

p := 4294967279
Often we will need random numbers, random integersin the range 0..p-1. Y ou can create arandom
| number generator using the rand command as follows. Then call it to create random numbers.
01> R :=rand(10):
1> R();

1> R(O);

ﬁ> seq(R(), i=1..10);

7,3,6858,1,95,3
Y ou can also create long random integers.
> U := rand(107100):
> U);
4570391695941600884305716749604988340858129204579164537470194616440313953079\

20624947349951053530086

s [E—

L 0=
B Lists

| The simplest data structure in Mapleisalist. The elements of alist may be of any type. To createalist
of values enclose them in square brackets [,]. Lists may be nested of course and the entries may be of

| any type.

1> restart;

1> E :=[]: # the enpty list

| E:=[]

1>L:=1[1,2,-3,4,1];

i L:=[1,2,-34,1]

n>M:=1[1,2,3],[x,Y,2]];

i M:=][1, 2, 3], [x VY, 2]

] To count the number of entriesin alist use nops(L) command.

1> nops(L);

i 5
> nops(M;

i 2
To accessthei’th element of alist (counting from 1) use a subscript. A negative subscript counts from

| the end.

1> L[3];

i -3

N> L[-1];

i 1

1> M2];

: x .2
>M2][2];

i y

1 Use the following to extract a sublist

> L[2..3];

U [21 -3]

N> L[2..-1];

L [21 _3) 41 1]

] To append (prepend) elementsto alist use the following.

1> op(L);

i 1,2,-34,1

1> [op(L),5];

7 [1,2,-3 4,1,5]

] Totestif anelementisinalist use

1> menber(2,L);

i true

H Although you can assign to an entry of alist (asif it were an array) if the list haslessthan 100 elements,

| do not do this. It creates acopy of the entirelist. Soit’snot efficient. Use Arrays.
H> L[2] := 10;
I

L2 =10

\

L;

[1, 10, -3 4, 1]
>

B Loopsand If statements.

0> restart;

| To do asequence of calculationsit will be handy to know how to use some of Maple’ s looping commands
and also the if command. To execute acommand in Maple conditionally use the if command which has
either of the following forms

if <condition> then <statements> el se <statements> fi
or just

if <condition> then <statements> fi

> if 2>1 then print(good) else print(bad) fi;

good
To execute one or more statements zero or more times in aloop use the for command. It hasthe
following form

for <variable> from <start>to <end> do <statements> od

>for i froml1l to 5 do i”2; od;
1
4
9
16

25
To execute some statements while a condition is true use the while loop. It has the syntax

while <condition> do <statements> od

| In the following example we repeatedly divide an integer n by 2 until it is odd.

1>n :=12; while iremn,2) = 0 do n :=iquo(n,2); od;
n:=12
n:=6
n:=3

Hereisaloop to calculate the GCD of two integersa and b using Euclid’ s algorithm. Notice that this
loop has three statements in the body of the loop - between the do ... od, each of which isterminated by a

U semicolon. You don't have to put them on the same line as | have done here.
1>a :=64; b := 20;

a.=64
b:=20

[

> while b <> 0 do

> r:=irema,b); a:=Db;, b:=r;
> od,;
r=4
a:=20
b:=4
r-=0
a.=14
b:=0
Thus 4 should be the GCD(64,20). A check with Maple
1> igcd(64, 20);
4

We will use Maple to obtain the first prime bigger than the integer 128"6. Note, the nextprime command
does this automatically.

>p .= 128"6+1;
while not isprinme(p) dop :=p + 2 od,
p := 4398046511105
p := 4398046511107
p := 4398046511109
p := 4398046511111
p := 4398046511113
p := 4398046511115
p := 4398046511117

p := 4398046511119
> next prine(128"6);
4398046511119
Two other useful 1ooping constructs are the map command and the seq command and the add command.
The examples show what the commands do.
>L :=1]1,2,3,4,5];
L:=[1,2,3,4,5]
> map(f, L);
S [f(1), f(2), #(3), (4), f(5)]
> map(isprine, L);
[falsg true, true, false true]
> seq(i72, i=1..5);
1,4,9, 16, 25
> seq(L[i], 1=1..nops(L));
1,2,34,5
> seq(isprime(L[i]), i=1..nops(L));
falsg true, true, false true
> seq(L[i]*x~(i-1), i=1..nops(L));
1,2x3x%,4x% 5%
> L :=[seq(n*2, n=L)];
L:=[1,4,09, 16, 25]
> add(f(i), i=1..5);
f(1) +f(2) +f(3) + f(4) +(5)
> add(i72, i=1..5);

55

[
> add(x[i], i=0..5);
H X EX T +X+H X+ X
> add(x™i, 1=0..5);
H 1+x+X+xC+x+x°
1 Read the help files for these commands, they are very handy.
0> ?map
0> ?seq
0> ?add
L 0>

B Modular Arithmetic

| Modular arithmetic is done using the mod operator in Maple. By default, Maple uses the positive range
for the integers modulo m, that is, the result is calculated in therangeO .. m— 1.

0> restart;
n> 12 nod 7;

5
N> 2+3*3 nod 7;

4

To compute a(_l)mod m, you can do either of the following
1> 27(-1) nod 7;

, 4
1> 1/2 nod 7,
, 4
! To computea” mod myou can do either
1> 2 ~ 200 nod 7;
, 4
N> 2 & 200 nod 7,

4

Usethe latter. The differenceisthat in the first case, the integer 22%° was computed then reduced modulo

U m. Inthe second case, all products were reduced modulo m so no large integers occured.

1 Wewill use aloop to verify that Fermat’s (little) theorem holds for p = 13 but not for n = 14.
1>p := 13;

for i fromO to p-1 do (i”™p nod p)

p:

i od;

nm oo n
H
w

© 00 ~NOoO O~ WDN PP O
1
© 00 ~NOoO Ol WDN PP O

10=10
11=11
12=12
1> n := 14;

for i fromO ton-1do (i“n nod p) =i od;

n:=14

BEBR wwos»pro
0Tonon onon
© v v m D»WN PR O

N
I

P A O B
I n
[
= O

1
=
N

i 0=13
] We can solve equations and systems of equations modulo n using the msolve command.
1> msol ve(6*x=4, 13);
{x=5}
1> nmsol ve(6*x=4, 26);
{x=5},{x=18}
> nsol ve({24*a+b=5, 4*a+b=9, 18*a+b=1}, 26);
i {a=13 Z2~+5,b=15}
] Thevariable Z2~ means any integer so the solutionsare{b = 15, a= 18} and {b = 15, a=5}.
] You can use the ichrem command to solve the Chinese remainder problem.

Suppose we want to solveu==3mod 5and u==4mod 7 and u= 1 mod 3.
1> u :=chrem([3,4,1], [5,7,3]);

i u:=88
> u nod 5;
i 3
7> u nod 7;
i 4
> u nod 3;
1

The chrem command appliesitself accross the coefficients of polynomials. E.g. suppose we want to
solve

1f=3x*+2xmod7andf=2x>+5x+7mod 11.
N1>f = chren([3*x"2+2*x, 2*x"3+5*x+7], [7,11]);
| f:=7+66%x°+35x>+16 X

> f nod 7;

3x%+2X

H>f nod 11;

H 2x3+5x+7
N>

B Maple Functions and Procedures

A simple function, like the function ek(x) = a*x+b mod n may be input using the arrow notation in Maple,
| asfollows
> ek := x -> 3*x+5 nod 26;
ek:=x - (3x+5)mod 26
1> ek(1l); ek(7);
8

0
A procedure in Maple takes the form

proc(pl, p2, ...)

local I1, 12, ... ;

global g, g2, ...;
statementl,
statement?;

statementn;
end proc

There may be zero or more parameters, one or more locals, one or more globals and one or more
statements in the procedure body.

Thelocal and global statements are optional. Variables in the procedure body that are not explicitly
declared as parameters, locals, or globals are declared to be local automatically if assigned to, otherwise
they are global. The value returned by the procedure is the value of statementn, the last statement in the
body of the procedure or the value of an explicit return statement. Type declarations for parameters and
U local variables need not be explicitly given. Some examples will help.

>f = proc(x) y :=x"2; y-1;, end proc;

Warning, ‘y‘ is inplicitly declared |ocal to procedure ‘f*

f:=proc(x)local y; y :=x"2; y—1end proc
1> 1(2);
3
1> f(z);
Z-1
This next example searchesalist L for the value x. It outputs the position of the first occurrence of x in L
and O otherwise. | am aso telling Maple that the input should be of typelist. Below isan example with
inputs of typeinteger. See ?typefor how to specify types and for what types are available if you need
| them.
> position := proc(x::anything,L::1ist) local i;
for i from1 to nops(L) do if L[i]=x then return i fi; od,
O; # neaning x is not in the |ist
end proc;
position :=
proc(x::anything, L::list) local i; for i tonopqL) doif L[i] =xthenreturni end if end do; 0 end proc
1> position(x,[u,v,wX,VY, z]);
4

1> position(y,[u,v,w);
| 0

] This next exampleisanimplementation of the Euclidean algorithm. It uses the multiple assignment.
n>a,b :=23;

i a,b:==23
1> EuclideanAl gorithm:= proc(a::integer,b::integer) local c,d,r;
(c,d) := (abs(a), abs(b));
while d <> 0dor :=iremc,d); (c,d) :=(d,r); od;
C,
end proc;
EuclideanAlgorithm := proc(a::integer, b::integer)
local c, d, r;
c, d ;= abgqa), abgb); whiled#0dor :=irem(c, d); c,d :=d, rend do; c
| end proc
1> EuclideanAl gorithn{24, 210);
6

Procedures may be nested, nested lexical scoping is used (alaPascal).
Procedures may be returned and passed freely as parameters.
U The simplest debugging tool isto insert print statements in the procedure. For example

1> EuclideanAl gorithm:= proc(a::integer,b::integer) local c,d,r;
(c,d) := (abs(a), abs(b));
while d <> 0dor :=iremc,d); print(r); (c,d) :=(d,r); od;
C,
I end proc:
1> EuclideanAl gorithn(24,210);
24
18
6
0
6

] The next simplest debugging tool is the trace command. All assigment statements are displayed.
1> trace(EuclideanAl gorithm;

EuclideanAlgorithm

1> EuclideanAl gorithn(24, 210);
{--> enter EuclideanAlgorithm args = 24, 210

c,d:=24,210
r:=24
24
c,d:=210,24
r:=18
18
c,d:=24,18
r-=6
6
c,d:=18,6
r.=0
0

——

I

]
0

I

H
H

c,d:=6,0

6
<-- exit EuclideanAl gorithm (now at top |level) = 6}

6
The printf command can be used to print more detailed information in a controlled format. It works just
like the printf command in the C language. The main difference is the %a option for printing algebraic
objects like polynomials. E.g.
>printf("A polynomal %a\n", x"2-2*y*x);
A pol ynom al x72-2*y*x
Here we print the quotients in the Euclidean algorithm. Notice the three argument version of the iquo
command. It computes and returns the quotient but assigns the third input (a variable) the value of the
remainder. Notice that the quotients, with exception of the first one, are typically small.
>q:=1iquo(6, 4, 'r’);

q:=1
> r;
2
> EuclideanAlgorithm:= proc(a::integer,b::integer) local c,d,r,q;
(c,d) := (abs(a), abs(b));
while d <> 0 do
r :=iremc,d, ' q);
printf("Quotient = %l\n", q);
(c,d) :=(d,r); od;
C,
end proc:
> Eucl i deanAl gorithm(123456789, 54321) ;
Quotient = 2272
Quotient =1
Qoo <
otrent =
%otient =1
Quotient =1
Quotient = 14
Quotient =1
Quotient = 2
Quotient =1
Quotient = 26

3
Hereis arecursive implementation of Euclid' s algorithm.

1> EuclideanAl gorithm:= proc(a::integer,b::integer)

I f a<0 then EuclideanAl gorithn(-a,b)
elif b<O then EuclideanAl gorithna,-b)
elif a<b then EuclideanAl gorithn(b, a)
elif b=0 then a

el se EuclideanAl gorithm(b,irem(a, b))
fi;

end:
1> EuclideanAl gorithn{-30, 16);
2
Thereismore. See ?proc if you need more information or more tools.
>

B Polynomials and Finite Fields

Polynomialsin Maple are smply input as formulae using the arithmetic operators. For example
> restart;

> f = xM4-3*x"N2+12;

isapolynomial in one variable, x with integer coefficients. Here isapolynomial in two variables.
>a = (X-y)*(x"2-yh2) *(x"3-y"3);

, a:= (x=y) (X" =y (C -y’
] To multiply the factors of the polynomial out use the expand command
1> expand(a);

H f=x*-3x%+12
I

| XE =Xty +xy° —yxE Yt -y

] To factor the polynomial into prime factors with integer coefficients use the factor command
1> factor(f);
factor(a);

x*—3x%+12

, (x=Y)” (x+y) (X" +xy+y?)
! To compute the degree of a polynomial and read off a coefficient in X do
1> degree(f,x); coeff(f,x,2);
4
-3
> degree(a, x); degree(a,y);
6

6
> coeff(a, x,2); coeff(a,y,?2);

We will only need polynomialsin one variable and mostly work intherings Z[x] and Zp[x] wherep
will be aprime integer. In what follows we show operations for Zp[x] and also Q[X]. For help for
operations for polynomials see ?polynomial. For help for operationsin Zp[x] see ?mod.

U Here are two polynomials
1> a := 2*X"6- 3* X" 5+3*x+3;
a:=2x"-3x°+3x+3
1> b := 3*x"4-4*x"3+1,;
b:=3x"-4x*+1
The command eval(a(x), x=k) evaluates the polynomial a(x) at x = k. The command Eval(a, x=k) mod

L p doesthismodulo p. For example
N> eval (a, x=2);

41
> Eval (a, x=2) nod 7;
6
Here is how we can tabulate the values of this polynomial for all valuesinZ,. We conclude that a(x) has

U no roots.
1> seq(Eval (a,x=i) nmod 7, 1i=0..6);

i 3,56,64,4,5

] We can interpolate a polynomial from it’s values as follows

1> a

| 2x8-3x>+3x+3
1> X :=[seq(i,i=0..8)];

7 X:=[0,1,2,3,4,5,6,7,8]
NT>Y :=[seq(eval(a,x=i), 1=0..8)];

I Y:=[3, 5,41, 741, 5135, 21893, 70005, 184901, 426011]
1> interp(XY,p);
2p°-3p°+3p+3
The command expand(@*b) multiplies out the product a b. The command Expand(a* b) mod p does the
U product modulo p, that is, al coefficients in the resulting polynomial are reduced modulop . For example
>p =5
p:=5
> expand(a*b);
6x°-17x°+2x°+12x°+6x°-3x* +3x-12x>+3
> Expand(a*b) nod p;
xP+3x7+2x°+ 2B+ +2x +3x+3x°+3
The operationsrem(a,b,x) and quo(a,b,x) compute, respectively, the remainder r and quotient g of a
divided by b satisfyinga=b q +r withr =0 or deg(r) < deg(b). The corresponding operations for Z, are
Rem(a,b,x) mod p and Quo(a,b,x) mod p. For example
>r :=rema,b,x);
85 28 2 16
27 9" 37 27

3
X

\%

q := quo(a,b,x);

\%

expand(a = b*q+r);
2x°-3x°+3x+3=2x"-3x°+3x+3

>r := Rem(a, b,x) nod p;

i r=2x2+x*+2x
1> 9 := Qo(a, b,x) nod p;

7 q:=4x2+x+3
1> Expand(a = b*g+r) nod p;

2x°+2x°+3x+3=2x°+2x°+3x+3
The commands gcd(a,b) and lcm(a,b) compute, respectively the greatest common divisor and least
common multiple of two polynomials. The corresponding operations for Zp areGed(a,b) mod pand Lcm
(ab) mod p. For example
1> gcd(xM4-2*x"2+2, xN4+1)
1
1> CGecd(xM4-2*x"2+2, x 4+1) nod p;
X2 +2
The command gcdex(a,b,x,’s’,’'t") outputsg = GCD(a, b) . It also outputs through the input parameterss, t
integers satisfying the equationsa +t b =g and satisfying deg(s) < deg(b) and deg(t) <deg(a). The
corresponding command foer is Gcdex(ab,x,’s',’'t') mod p. For example
> gcdex(a, b, x,’s’,’t");
1
> S,
6847 1356 8358 , 3312
25565 5113~ " 25565 ~ 25565 ¢
5024 201 4958 , 4734 , 2208 . 1188

25565 25565 T 25565 ¢ 25565 | 255657 5113

3

4

[
L [

|

> expand(s*a+t*b);
1
> Gcdex(a, b, x,’s’,’t’) nod p;
X2 +3x+1
> s;
X+4
>t
X +3x2+3x+4
> Expand(a*s+t*b) nod p;

2
X“+3x+1
The commandirreduda) outputs true if the polynomial ax) is irreducible and the command factor(a)
outputs the factorization of a(x) into irreducible factors over the integers. The corresponding commands
foer are Irreduc(a) mod p and Factor(a) mod p. For example
> factor(a);
2x°-3x>+3x+3
> factor(b);
(BX°+2x+1)(x-1)°
> Factor(a) nod 5;
2 (x+1) (x+4)°
> Factor(b) nod 5;
3(X°+4x+2) (x+4)
The polynomial x? +x+1 isirreducible modulo 2
> Fact or (x"2+x+1) nod 2;
X2 +x+1
and hence the finite field of 4 elements can be represented by polynomials of degree < 2 over the integers

modulo 2, i.e. the polynomialsR={0, 1, x+1,x} . We construct the multiplication table M for this
finitefield asfollows.
>R :=10,1, x, x+1];

M:= matrix(4,4);

R:=[0,1, x, x+1]

M:=array(1..4,1..4,[])
>for i to 4 do
for j to 4 do Mi,j] := RmMRIi]*Rj],x"2+x+1,x) nod 2 od;

od;
> print(M;
0 0 0 H
1 X x+1z
x x+1 1 {
x+1 1 x O
See ?mod for other operations on polynomials over the integers modulo p .
>

B Subscripted Names and Arrays

Variables may be subscripted. For example, hereisapolynomial in x;, X,, X;. You can assign to the
subscripts.

> restart;

N>f := 1-x[1]*x[2] *x[3] ;

> x[1] = 3;
f=1-x%%
| X =3
1> f
| 1-3%%

There may be more than one subscript and the subscripts may be any value.

Arrays are like arrays from computing science. Here is how to create a one-dimensional array A with
|l values indexed from 1 to 5.

1> A := Array(1..5);

i A:=[0,0,0,0,0]

1 By default, the entriesin the array A areinitialized to O.

1> A 1] := 3;

f A =3

n> A[1];

i 3

n>for i from2 to 5 do Ali] := 3*A[i-1] od;
A =9
A, =27
A,=81

| A, =243

Hereis aMaple procedure for multiplying two positive integers of length m and n stored in the arrays A
| and B base 10 where the arrays are indexed from 0, so A isindexed fromOtom-1. N
m> IntMul := proc(m:posint,n::posint, A :Array, B:: Array)
local C, i,j,carry,t;
C:= Array(0..mn-1);
for i fromO to m1 do

carry := 0;

for j fromO to n-1 do

t 1= A[i1]*B[j]+carry+(i+j];

di+j] :=iremt,10, carry’);
od;
Ci+j] := carry;
od;
G
end:

> a,b := 9876, 1234;

a, b:=9876, 1234
1> A := convert(a, base, 10);

A:=[6,7,8,9]

] Theaboveisalist. Hereisashort way to makeit into an Array.
1> A := Array(0..3,A);

A:=Array(0..3,{(0)=6, (1) =7, (2) =8, (3) =9}, datatype = anything, storage =rectangular,

, order = Fortran_order)
1> B := Array(0.. 3, convert (b, base, 10));

B:=Array(0..3,{(0)=4, (1) =3, (2)=2, (3) =1}, datatype = anything, storage = rectangular,

[

order =Fortran_order)
> C:=IntMil (4,4, AB);
C:=Array(0..7,{(1)=8,(2)=9,(3)=6,(4)=8,(5)=1, (6)=2, (7) =1, (0) =4},

datatype = anything, storage = rectangular, order = Fortran_order)
>c¢ = add((i]*10%, i=0..7);

c:= 12186984
> a*b;
12186984

The same basic procedure can be used to multiply polynomials. Suppose we represent a polynomial asa
list of coefficients. To alow usto convert from Mapl€e' s polynomial representation we'll write aMaple

| procedure MapleToL ist and ListToMaple to convert from and to Maple's polynomial representation.

> Mapl eToLi st := proc(f::polynonm(rational),x) local i;
If f=0 then return [] fi;
[seq(coeff(f,x,i), 1=0..degree(f,x))];
end:
Li st ToMapl e : = proc(L,x) local i;
add(L[i]*x"(i-1), i=1..nops(L));
end:
> f 1= 3*x"3-12*x+5;
f:=3x°-12x+5
> F := Mapl eToLi st (f, x);
F:=[5,-120, 3]
> Li st ToMapl e(F, x);

3x3-12x+5
Now we can write the polynomial multiplication procedure - again, we'll use Arrays of coefficients.

U We'll show how to construct the Array in two ways, the second being a shortcut for the first.
1> PolMul := proc(f::list(rational),g::list(rational))

local Cmn,i,j,A B;
If f=[] or g=[] then return [] fi;
m:= nops(f)-1; A := Array(0..m;

for i fromO to mdo Ali] := f[i+1] od,
n :=nops(g)-1;, B := Array(0..n,Q);
C:= Array(0..mtn+1);
for i fromO to mdo
for | fromO to n do
Cli+] = Ali]*B[j]+i+];
od;
od;
[seq(Ji], 1=0..mn)];
end:
> a = -62-50*x"5-12*x"4-18* x"3+31* x"2- 26* X,
a:=—62-50x>-12x*-18 x> +31 x> - 26 X
> b = XM+5*XN2+6* X+7;

bi=x'+5X*+6X+7
> Li st ToMapl e(Pol Mul (Mapl eToLi st (a, x), MapleToList(b,x)), x);

—434 -554 x - 249 x> - 70 x> —99 x* - 538 x°> - 329 x® - 268 x' — 12 x® - 50 x°
> expand(a*b);

—434 -554 x - 249 x> - 70 x° —99 x* —538 x° - 329 x° - 268 x' — 12 x® - 50 x°

