
CMPT 881 course project list: Spring 2013

Instructor: Michael Monagan
Due 5pm Wednesday April 24th.

Part I: Karatsuba’s algorithm and the FFT (50 marks).

REFERENCE: Chapter 4 of the Geddes text.

Let a, b ∈ Zp[x] be two polynomials of degree n − 1. The classical algorithm uses n2

multiplications in Zp to multiply a×b. Karatsuba’s algorithm does O(n1.585) multiplications.
If p satisfies 2n+1|p−1 then we can use the FFT to multiply using O(n log n) multiplications.

The goal of this project is to implement the classical multiplication and either Karatsuba’s
algorithm for Zp[x] or the FFT for Zp[x] and compare them. Note, I think Karatsuba’s
algorithm is more difficult to implement than the FFT.

Note, to implement the algorithms in C or C++ or Java you should restrict the size
of prime p such that p2 < 263 on a 64 bit machine so you can multiply x, y ∈ Zp using
x*y % p. For the classical algorithm, most of the time is in divisions by p. You can speed

up the classical algorithm a lot by reducing the number of divisions by p from O(n2) to O(n).

For the FFT you need to compute inverses in the Zp. Use the extended Euclidean
algorithm for this. After you get the basic FFT working, modify it to precompute the powers
of ω that you need in an array so that you can reuse them in the FFT. This optimization
doubles the speed of the FFT.

For Karatsuba’s algorithm, use the classical algorithm at the base of the recursion for
small degrees, i.e., pick a cutoff M such that if deg a < M or deg b < M you will use the
classical algorithm. You will pick M to optimize the actual running time by experiment.

The main difficulty with implementing the fast algorithms is how you manage the storage
for the intermediate polynomials. Since both algorithms are recursive, you could end up
spending 90% of the total time allocating and deallocating memory if you are not careful.
For both algorithms it is desirable to eliminate all storage management calls by allocating
one piece of working storage W of size O(n) at the beginning such that all intermediate data
are stored in W . This is easy to do for the FFT but more difficult Karatsuba’s algorithm.

Compare your Karatsuba or FFT code with the classical algorithm. Hence for suitable
degrees n, say, n = 2500, n = 5000, 10000, 20000, 40000, ... time both methods. You need
sufficient data to see clearly when the fast algorithm beats the classical algorithm.

1

You will need to generate polynomials with random coefficients. Do this using a primitive
element α ∈ Zp which you can obtain using Maple’s alpha := numtheory[primroot](a,p);

command which computes the first primitive element greater than a in Zp. Then use the
powers of α modulo p for the random coefficients. I.e. use

for(x=1,i=0; i<n; i++) { x = alpha*x % p; a[i] = x; }

Hand in your code and test data and timing data.
Please tell me what was the most difficult part of this project.

Part 2: Newton’s Method for Fast Division (20 marks)

Study the material in section 4.9 of the Geddes text. It explains how to use Newton’s method
to invert a power series a(x) over a field F , i.e., to compute a(x)−1 to O(xn). It explains,
briefly, how to use this to divide fast.

(a) Reproduce the approximations in Example 4.12 by executing Newton’s algorithm in
Maple. If you want to program the iteration in a loop, that’s fine.

(b) The presentation of Newton’s method in Algorithm 4.6 FastNewtonIteration is not
helpful when you need an a(x)−1 to order O(xn) and n is not a power of 2. Modify
Algorithm 4.6 to compute a(x)−1 to O(xn) instead of O(x2

n
). The easiest way to do it

is to compute the inverse recursively to O(xdn/2e). Implement your algorithm in Maple
and compute a(x)−1 to O(x22) using the a(x) in Example 4.12.

(c) Let T (n) denote the number of operations in F the Newton iteration takes to compute
a(x)−1 to O(xn). On page 140 the text gives

T (2k+1) = T (2k) + cM(2k)

where M(2k) is the cost of multiplying two polynomials of degree k. I’d prefer to
substitute n for 2k+1 and rewrite it as

T (n) = T (n/2) + cM(n/2)

and assume n is a power of 2 i.e. n = 2k. The analysis given, which assumes the
FFT is used for multiplication, suggests that if you don’t use the FFT then the cost is
O(n2), but in fact we can do better. Assuming only that M(n) ≥ 2M(n/2), and using
T (1) = 1 for the cost of inverting a0, show that T (n) ≤ cM(n) thus T (n) ∈ O(M(n)).
Hence conclude that we can compute the inverse as fast as we can multiply (up to a
constant factor) no matter what multiplication algorithm is used.

2

