MAPLE Notesfor MACM 442/ MATH MPT 831

Michael Monagan
Department of Mathematics
Simon Fraser University
August, 1998.
Updated August 2002, September 2004, September 2006.

1> restart;
| These notes are for Maple V Release 10. They are platform independent, i.e., they are the same for the

Macintosh, PC, and Unix versions of Maple. These notes should be backwards compatible with Maple 8 and
Maple 9.

= Mapleasa Calculator

Input of anumerical calculation uses +, -, *, /, and ” for addition, subtraction, multiplication, division, and
exponentiation respectively.

> 1+2*3-2;

5
> 27 3:

8
> 120/ 105;

8

7

Because the input involved integers, not decimal numbers, Maple calcul ates the exact fraction when there
isadivision, automatically cancelling out the greatest common divisor (GCD). In thiscasethe GCD is
15, which you can calculate specifically as
> igcd(120, 105);

15
Observe that every command ends with asemicolon; Thisisagramatical requirement of Maple. If you
forget, Maple will assume that the comand is not complete. Thisalows you to break long commands
acrossaline. For example
> 142*3/
> (2+43);

11

5
For some analysis with probabilities, we will need to use decimal arithmetic. The presence of a decimal
point . in anumber means that the number is a decimal number and Maple will, by default, do all
calculationsto 10 decimal places.

> 120/ 105. O;

1.142857143
> sqrt(2.0);

1.414213562
> sqrt(2);

2
Notice the difference caused by the presence of adecimal point in these examples. Now, if you have
input an exact quantity, like the\/E above, and you now want to get a numerical value to 3 decimal

digits, use the evalf command to evaluate to floating point. Use the % character to refer to the previous
Maple output.

1> eval f(%3);

141

To input aformula, just use a symbol, e.g. x and the arithmetic operators and functions known to Maple.
U For example, hereisaquartic polynomial inx.
1> xX"4-3*x+2;
x*—3x+2
We are going to use this polynomial for afew calculations. We want to give it the namef so we can refer
U toit later. We do this using the assignment operation in Maple as follows
1> f = x"4-3*x+2;
fi=x"-3x+2
[The namefisnow avariable. It refersto the polynomial. Hereisit’svalue
> f;
x*-=3x+2
[To evaluate this as afunction at the point x = 3 use the eval command as follows
> eval (f, x=3);
74
The following commands differentiatef with respect to x and factor f into irreducible factors over the field
| of rational numbers.
1> diff(f,x);
4x°-3
> factor(f);
(x—l)(x3+x2+x—2)
Y ou can graph functions using the plotting commands. The basic syntax for the plot command for a
U function of one variableisillustrated as follows:

1> plot(f,x=0.5..1.5);

In the graph | can see alocal minimum near x=0.9. We can find this point using calculus. The command
fsolve(f(x)=0, x), on input of a polynomial f(x) computes 10 digit numerical approximations for the real
roots of f(x).
1> fsolve(diff(f,x)=0,x);

0.9085602964
We have used the name f as variable to refer to formulae and the symbols x for an uknown ina formula

Often you will have assigned to a name like we have done here to f but you want now to use the namef as

L asymbol again, not asavariable. Y ou can unassign the value of a name as follows
> f:

x*—3x+2

To find out how to use Maple commands, such as plot, factor, eval, and diff, go to the Maple help page by
typing ?plot

and look at the examples. Do thisnow if you are using Maple for the first time. Y ou will get a"help

| window".

1> ?eval

1> ?pl ot

1> 2diff

1> ?fsolve

L 0=

Ml Integers
| Here are some commands which do integer calculations that we will use in the course. Integersin Maple
are not limited to the precision of the hardware on your computer. They are limited by an internal limit of
Maple to approximately half amillion digits. Any calculations that you do with large integers though will
| take longer for larger integers. Hereis2'® .
N> 27100;

1267650600228229401496703205376
The command irem(a,b) computes the integer remainder of adivided by b. The command iquo(a,b)
I computes the integer quotient of adivided by b. For example

>a = ;
b :=7;
a:=20
i =7
T>r :=irema,b);
i r:=6
1> q :=iquo(a,b);
i q:=2

] It should bethe casethat a=bq+ r. Let'scheck
>a = b*q + r;
20=20
The commands igcd(a,b) and ilcm(a,b) compute the greatest common divisor and least common multiple

U of integersaand b, respectively.
1> 1igcd(6,4);

2
1> 1ilcm6,4);

12
The command igcdex(a,b,’s ,’'t’)) outputsg=GCD(a, b). Itasoassigns st integers satisfying the
equationsa+tb=g and &atisfying| s| <| b| and| t| <| a| . S0 this command implements the extended
U Euclidean algorithm. For example

1> g :=igcdex(3,5 s ,'t");
i g=1
1> s;
| 2
N> t;
| -1
1> s*3+t*5;

1

The command isprime(n) outputs false if niscomposite and true if nis prime.
The command ifactor(n) computes the integer factorization of an integer.
> isprinme(997);

true
1> isprime(1001);
false
1> ifactor(1001);

(7) (11) (13)

For the RSA cryptosystem we need large primes, 100 digit primes. The command nextprime(n) outputs
the first prime greater than or equal to n and the command prevprime(n) finds the first prime less than or
U equal to n. Hereisthefirst 100 digit prime.

s s [s [

I

I

1> prevprinme(107100);

99\
999999999999999999999203

1 Several of the cryptosystems require that we generate random primes, or primes with certain properties.

This needs to be done with some care. For example, the prime we just generated is not a good prime
simply because of the way we created it. We need arandom prime. Note, Maple' s random number
generator rand(...) is a"pseudo-random-number-generator”. It will always create the same sequence of
random numbers.
> R := rand(0..10710-1);

R :=proc() (proc() option builtin; 391 end proc)(6, 120000000000, 34) end proc
So R isthe random number generator. It's aMaple procedure. You cal it with no arguments to get

| random numbers.

> R();

581869302
> R();

4161255391

For alist of integer commands see
> ?i nt eger
>

B Lists

| The simplest data structure in Mapleisalist. The elements of alist may be of any type. To createalist

of values enclose them in square brackets [,]. Lists may be nested of course and the entries may be of
any type.

> restart;

>E :=1]]; # the enpty |ist

E:=[]
> Lo

[1,2,-3,4,1];

L:=[1,2,-341]
> M:

[[1,2,3].[x,y,2]];
M:=][1, 2, 3], [xV, 2]
To count the number of entriesin alist use nops(L) command.
> nops(L);
5
> nops(M;
2

To accessthei’th element of alist (counting from 1) use a subscript. A negative subscript counts from
the end.

> L[3];

-3
> L[-1];

1
> M?2];

XY, 2]

>M2][2];

y

Use the following to extract a sublist
> L[2..3];

[2’ '3]

m>L[2..-1];
U [21 -31 41 1]
] To append (prepend) elementsto alist use the following.
1> op(L);
i 1,2,-341
1> [op(L),5];
i [1,2,-3 4,1, 5]
] Totestif anelementisinalist use
1> menber(2,L);
i true
L 0>
= Loops

0> restart;

] To do asequence of calculationsit will be handy to know how to use some of Maple’ s looping commands
and also the if command. To execute acommand in Maple conditionally use the if command which has
either of the following forms

if <condition> then <statements> el se <statements> fi
or just

if <condition>then <statements> fi

> if 2>1 then print(good) else print(bad) fi;
good

To execute one or more statements zero or more times in aloop use the for command. It hasthe
following form

for <variable> from <start>to <end> do <statements> od

>for i froml1l to 5 do i”2; od;
1
4
9
16

25
To execute some statements while a condition is true use the while loop. It has the syntax

while <condition> do <statements> od

| In the following example we repeatedly divide an integer n by 2 until it is odd.

1T>n :=12; while iremn,2) = 0 do n :=iquo(n,?2); od;
n:=12
n:=6
n:=3

Hereisaloop to calculate the GCD of two integersa and b using Euclid’ s algorithm. Notice that this
loop has three statements in the body of the loop - between the do ... od, each of which isterminated by a

J semicolon. You don’t have to put them on the same line as | have done here.

1T>a :=64;, b := 20;
a:=64
i b:=20
1> while b <> 0 do
> r :=irema,b); a:=b; b:=r;
> od;
r=4
a:=20
b:=4
r:=0
a.=14
i b:=0
] Thus 4 should be the GCD(64,20). A check with Maple
1> 1gcd(64, 20);
i 4
Two other useful looping constructs are the map command and the seq command. The examples show
| what the commands do.
T>L:=11,2,3,4,5];
7 L:=1[1,2,34,75]
>map(f, L);
| o [f(1), (2), f(3), f(4), f(5)]
1> map(isprinme, L);
, [false true, true, false true]
> seq(f(n), n=L);
| f(1), f(2), #(3), #(4), #(5)
> seq(isprime(n), n=L);
i false true, true, false true
1>L :=[seq(n*2, n=L)];
L:=1[1, 4,9, 16, 25]

1 Read the help files for these commands, they are very handy.
1> ?map

1> ?seq

] >

B Modular Arithmetic

| Modular arithmetic is done using the mod operator in Maple. By default, Maple uses the positive range
| for the integers modulo m that is, the result is calculated in the range0 .. m— 1.

0> restart;
1> 12 nod 7;
i 5
N> 2+3*3 nod 7;
4

H To compute a(_l)mod m, you can do either of the following
1> 2"(-1) nod 7,

4

n>1/2 nmod 7;

4

! To computea” mod myou can do either
1> 2 " 200 nod 7;

4
1> 2 & 200 nod 7;

4

Usethelatter. The differenceisthat in thefirst case, the integer 2% was computed then reduced modulo

U m. Inthe second case, all products were reduced modulo m so no large integers occured.
1 Wewill use aloop to verify that Fermat’s (little) theorem holdsfor p=7.

T>p =7,

for i fromO to p-1 do (i“p nod p) =i od;

g~ WNER ODT
I
b WNE Oy

, 6=6
] We can solve equations and systems of equations modulo n using the msolve command.
1> msol ve(6*x=4, 13);
{x=5}
> nsol ve(6*x=4, 26);
, {x=5}, {x=18}
1> msol ve({24*a+b=5, 4*a+b=9, 18*a+b=1}, 26);
{a=18+13 72~ b=15}

i The variable _Z2~ means any integer so the solutionsare {b =15, a= 18} and {b =15, a=5}.
N>

B Number Theory

| Some relevant integer functions are available in the number theory package.
U This shows how to load a package.
1> restart;

wi t h(nunt heory);
Warni ng, the protected nane order has been redefined and unprotected
[Glgcd, bigomega, cfrac, cfracpol, cyclotomic, divisors, factorEQ, factorset, fermat, imagunit, index,
integral_basis invcfrac, invphi, issgrfree, jacobi, kronecker, A, legendre mcombine, mersenne
migcdex, minkowski, mipolys, mlog, mobius, mroot, msgrt, nearestp, nthconver, nthdenom, nthnumer,
nthpow, order, pdexpand, ¢, Tt pprimroot, primroot, quadres rootsunity, safeprime, o, sg2factor,
i sum2sgrr, T, thue]

| The command phi(n) computes@(n) , the number of integers between 1 and n relatively primeton.
| Note this command is expensive because it factorsn.
1> phi (15);
8
The command mcombine(m1,ul,m2,u2) does Chinese remaindering to calculate the integer u satisfying
Ju=umodm,fori=1..2. Forexample
H> u := nconbi ne(5,4,7,3);

> u nod 5;

> u nod 7;

The command msgrt(x,n) computes a square root of x modulo n'if it exists and outputs FAIL otherwise.
Note this command factorsn so thisis also expensiveif nisnot prime.

1> p = 11,
i p:=11
> msqrt(2,p);
i FAIL
> msqrt(3,p);
i 5
1> 572 nod p;

3

The command mlog(x,m,n) computes the discrete logarithm of x base mmodulon, i.e. findsy such that

y"'mod n=x. Notethiscommand is expensive. Like integer factorization, no polynomial time algorithm
U isknown for the discrete logarithm problem.
17> x :=2 & 5 nod p;

i x:=10
1> mog(x, 2 p);
i 5
L 0=
B Strings
0 A string isinput astext inside " (string) quotes. For example
N> rest art
A= heI | 0"
B := "there"'
A:="helo"
i B :="there"
| The number of charactersin astring is given by length(s).
1> length(A);
i 5
] The empty string is"". To accessthei’th character from a string use A[i], e.0.
1> Al1]; A2];
llhll
U e
Negative subscripts count from the end of the string where position -1 refers to the last character in the
U string.
1> A-1]; A-2];
IIOII
i "
0 If A isastring the notation A[i..j] selectsthe substring of characters from positioni toj from A.
1> A1l..2]; Al-2..-1];
Ilhell
Illoll

ﬁ The command cat(sl,s2,...,9n) joins n strings together.

1> cat(A " ", B);
"hello there"
The seq command can be used to extract the sequence of characters from a string and we can put them
| back together using the cat command.
1> C:=seq(Ali], i=1..length(A));
C:="h" e """, 0"
1> cat(C);
i "hello"

] Hereis how you would extract all trigrams from a string.
1> seq(Ali..i+2], i=1..length(A-2);

"hel", "dl", "llo"

1 Thereismoreif you need it. See

1> ?string

1> ?StringTool s

1> wth(StringTool s):

War ni ng, the assigned nane G oup now has a gl obal binding

1> A
i "hello"
1> Search("l", A);
, 3
1> SearchAl Il ("I",A;

3,4

1 Hence the frequency of the letter "I" inthe string A is
1> nops([SearchAl I ("I",A]);

2

1>

B Maple Functions and Procedures

1 A simple function, like the function ek(x) = a*x+b mod n may be input using the arrow notation in Maple,
| asfollows
> ek := x -> 3*x+5 nod 26;

ek:=x - (3x+5)mod 26
> ek(1); ek(7);

8
i 0
0 We create the inverse function
1> 1/3*(y-5) nod 26;
i 9y +7

1>dk :=y -> 9*y+7 nod 26;
, dk:=y - (9y+7)mod 26
1> dk(8); dk(0);
1
7
So if we have encoded sometext "BUYIBM" asalist of integers[1,20,24,8,1,12] we can encrypt it and
| decrypt it asfollows.
1> plaintext :=1[1,20,24,8,1,12];
, plaintext :=[1, 20, 24, 8, 1, 12]
1> ciphertext := map(ek, plaintext);

ciphertext:=[8, 13, 25, 3, 8, 15]

1> map(dk, ci phertext);

[1, 20, 24, 8, 1, 12]

] For the Hill cipher, we which takes two inputs x1 and x2 and outputs two outputs y1 and y2 we will use a

Maple procedure rather than the arrow functions.
| A procedurein Maple takes the form

proc(pl, p2, ...)
local 11,12, ... ;

global g, g2, ...;
statementl;
statement?;

statementn;
end proc

There may be zero or more parameters, one or more locals, one or more globals and one or more
statements in the procedure body.

Thelocal and global statements are optional. Variablesin the procedure body that are not explicitly
declared as parameters, locals, or globals are declared to be local automatically if assigned to, otherwise
they are global. The value returned by the procedure is the value of statementn, the last statement in the
body of the procedure or the value of an explicit return statement. Type declarations for parameters and
local variables need not be explicitly given. Some examples will help.

>f = proc(x) y :=x"2; y-1, end proc;

Warning, 'y’ is inmplicitly declared local to procedure ‘f*

f:=proc(x)local y; y:=x"2; y—1end proc
> 1(2);
3
> f(2);
Z-1

This next example searches a string s for the letter x. It outputs the position of the first occurrence of x in
sand 0 otherwise. | am aso telling Maple that the inputs should be of type string. Below is an example
with inputs of type integer. See ?typefor how to specify types and for what types are available if you
need them.
> position := proc(x::string,s::string) local i;

for i from1l to length(s) do if s[i]=x then return i fi; od;

O; # nmeaning x is not in the |ist

end proc;

position :=
proc(x::string, s:string) local i; for i tolength(s) doif i] =xthenreturni end if end do; 0 end proc
> position("U', "BUYIBM);
2
> position("V', "BUYIBM);
0
> position(5,"BUYIBM);

Error, (in position) invalid input: position expects its 1st argunment, x, to be of
type string, but received 5

| Okay, now let’s code the Hill cipher. It isafunction of two arguments x1 and x2 (integers) and it outputs
U two values y1 and y2.

I

> e .= proc(xl,x2) local yl,y2;
yl := 11*x1+3*x2 nod 26;

y2 := 8*x1+7*x2 nod 26;
(yl,y2);
end proc:
> x = plaintext;

x:=[1, 20, 24, 8, 1, 12]
> e(x[1],x[2]);
19, 18
> ci phertext := [seq(e(x[2*i+1],x[2*i+2]), i=0..iquo(nops(x),2)-1)];
ciphertext:=[19, 18, 2, 14, 21, 14]
Now to decrypt we need the inverse of this function. We compute the inverse of the corresponding matrix

| mod 26

> A = Mitrix([[11,3],[8,7]]);
11 3
A::é %
8 7
%7 23%
8 11

For the decryption function I'll use Maple's -> notation instead of a procedure. Let’s check that d isthe

> | nverse(A) nod 26;

U inverse of e then decrypt the ciphertext.

>d = (yl,y2) -> (7*y1+23*y2 nod 26, 18*yl+11*y2 nod 26),

d:=(yl,¥y2) - ((7yl+23y2) mod 26, (18 y1 + 11 y2) mod 26)
> d(e(x1,x2));

X1, X2

1> e(d(x1,x2));

X1, X2
>y := ciphertext;
y:=[19, 18, 2, 14, 21, 14]
> [seq(d(y[2*i+1],y[2*i+2]), i=0..2)];
[1, 20, 24, 8, 1, 12]
This last exampleis an implementation of the Euclidean algorithm.

1> EuclideanAl gorithm:= proc(a::integer,b::integer) local c,d,r;
(c,d) := (abs(a), abs(b));
while d <> 0dor :=iremc,d); (c,d) :=(d,r); od;
C,
end proc;
EuclideanAlgorithm := proc(a::integer, b::integer)
local c, d,r;

c, d ;= abgqa), abgb); whiled#0dor :=irem(c, d); c,d :=d, rend do; c

| end proc
1> EuclideanAl gorithn(24, 210);

6
Procedures may be nested, nested lexical scoping is used (alaPascal).
Procedures may be returned and passed freely as parameters.

U The simplest debugging tool isto insert print statements in the procedure. For example
1> EuclideanAl gorithm:= proc(a::integer,b::integer) local c,d,r;

(c,d) := (abs(a), abs(b));

while d <> 0dor :=iren(c,d); print(r); (c,d) :=(d,r); od;

c

/| end p’roc:

1> EuclideanAl gorithn(24, 210);
24
18
6
0
6

] The next simplest debugging tool is the trace command. All assigment statements are displayed.
1> trace(EuclideanAl gorithm;

EuclideanAlgorithm

1> EuclideanAl gorithn(24, 210);
{--> enter EuclideanAl gorithm args = 24, 210

c,d:=24,210
r.=24
24
c,d:=210, 24
r:=18
18
c,d:=24,18
r.=6
6
c,d:=18,6
r.=0

o

c,d:=6,0

6
<-- exit EuclideanAl gorithm (now at top |level) = 6}

6

| Thereismore. See ?proc if you need more information or more toals.
L 0=

B Subscripted Names and String Utilities

| Variables may be subscripted. For example, hereis apolynomial in x1,x2,x3. You can assign to the
U subscripts.
1> restart;
N> f = 1-x[1] *x[2] *x[3] ;
> x[1] = 3;
fi=l-%%%

I X =3
1> f:
| 1-3%%
| There may be more than one subscript and the subscripts may be any value. For example, we may wish
U to record the numerical code for each letter of an alphabet. We could do this
1> code["A"] := 0;

code["B"] := 1;

code.,.:=0
| codeg.:=1

] etc. Basically, codeisnow atable (ahash table) with two entries. We can access an entry as follows
1> code["B"];

i 1
> code["C'];
code. ..
1 So given the following alphabet we can define the code of each letter in aloop. We aso do the opposite.
1> al phabet := "ABCDEFGH JKLMNOPQRSTUVWKYZ";
i alphabet :="ABCDEFGHIJKLMNOPQRSTUVWXY Z"
1> N := length(al phabet);
i N :=26
1> for i fromO to N1 do
x := al phabet[i +1];
code[x] :=1i;
char[i] := x;
i od:
| We give proceduresencode and decode to convert astring to alist of codes and back.
1> encode := proc(s::string) local i;
[seq(code[s[i]], i=1..length(s))];
J end:
1> decode := proc(x::list(integer)) local i,n;
n := nops(x);
cat(seq(char[x[i]], i1=1..nops(x)));
end:

1>c = encode(" BUYI BM') ;
c:=[1, 20, 24, 8, 1, 12]

> decode(c);

i "BUYIBM"
] We can use tables to count the frequency of each letter in a piece of plaintext s asfollows.
1> s := "TH SI STHEDAYTHATTHEL ORDHASMADE" ;

i S:="THISISTHEDAY THATTHELORDHASMADE"

] First we initialize the table entriesto 0. Then compute the frequencies
1> F :=table(): # create an enpty table

for i fromO to 25 do F[char[i]] := 0 od:
1> n :=length(s);
for i tondo x :=s[i..i]; F[x] := F[x]+1;, od:
n:=30

Now we convert to alist and use the sort command to sort in decreasing order. How to do this. We create
alist of theform [[x1,f1], [x2,f2], ...] where each x isaletter and thef it’ s corresponding frequency then
U sort it then covert to probabilities.

1> T :=[seq([char[i],F[char[i]]], 1=0..25)];

T=[["A", 41, ['B", 0], ['C", 0], ['D", 3], ['E", 31, ['F", 01, ['G", O}, ['H", 5], ["I", 2, ['T', 0],
K", 0L, ["L", 11, ['M", 11, ['N", O], ["0", 11, ['P", 0}, ['Q", O], ['R", 11,["S", 3}, ['T", 51, ['U", 0,

[V, O], ["W", 0], ["X", 0], [*Y", 1],['Z", O]] |
> sort(T, proc(x,y) if x[2]>y[2] then true else false fi end);

[T, 5, ['H", 51, ["A", 41, ['S", 31, ['E", 31, ['D", 81, ['1", 21, ['Y", 11, ['R", 11, ['0", 11, ['M", 1],
'L, 11,[°Z", 0], ['X", O}, ["W", O], ["V", 0], ["U", 0}, ['Q", O], ['P", O, ["N", 0, ['K", O], "', 0,
['G", 0L, ["F", 0], ['C", 0], ['B", O]}

>q :=[seq(char[i-1]=eval f(T[i][2]/n,3), i=1..26)];
g:=["A"=0.133,"B"=0.,"C"=0.,"D" =0.100, "E" =0.100, "F* =0.,"G" =0., "H" =0.167,
"I"=0.0667,"J' =0, "K" =0.,"L" =0.0333, "M" =0.0333, "N" =0, "O" =0.0333, "P' =0., "Q" =0,,
"R"=0.0333,"S'=0.100, "T" =0.167,"U" =0, "V" =0., "W" =0.,"X" =0,,"Y" =0.0333, "Z" =0.]
1>

= Polynomials and Finite Fields

] Polynomialsin Maple are simply input as formulae using the arithmetic operators. For example
1> restart;

XN4- 3* XN 2+12;

i x*-3x%+12

[isapolynomial in one variable, x with integer coefficients. Hereis apolynomial in two variables.
> a 1= (X-y)*(x"2-y"2) *(x"3-y"3);

I a:=(x-y) (X -y*) (X’ =y’
] To multiply the factors of the polynomial out use the expand command
1> expand(a);

| XE =Xy +x Y% =y +y e -y

] To factor the polynomial into prime factors with integer coefficients use the factor command
1> factor(a);

I ~y=x)° (Y +x) (Y +yx+x)
| We will only need polynomials in one variable and mostly work inthering Zp[x] wherep will be a
primeinteger. Inwhat follows we show operations for Zp[x] and also Q[X]. For help for operations for
polynomials see ?polynomial. For help for operationsin Zp[x] see ?mod.
U Here are two polynomials
> a = 2*xX"6- 3*x"5+3* x+3;

a:=2x"-3x"+3x+3
1> b = 3*x"4-4*x"3+1;

bi=3x"-4x*+1

The command eval(a(x), x=k) evaluates the polynomial a(x) at x = k. The command Eval(a, x=k) mod

|/ p doesthismodulo p. For example
1> eval (a, x=2);

i 41

> EBEval (a, x=2) nod 7;
i 6

Here is how we can tabulate the values of this polynomial for all valuesinZ,. We conclude that a(x) has
U no roots.
1> seq(Eval(a,x=i) nod 7, i=0..6);
.} 3! 5! 6! 6141415
] We can interpolate a polynomial from it’s values as follows
1> a
] 2x°-3x>+3x+3
1> X :=[seq(i,i=0..8)];

X:=[0,1,2,3,4,5,6,7, 8]
[seq(eval (a,x=i), 1=0..8)];
Y:=[3, 5,41, 741, 5135, 21893, 70005, 184901, 426011]
> interp(XY,p);

n>Y :

2p°-3p°+3p+3

The command expand(@*b) multiplies out the product a b. The command Expand(a* b) mod p does the
product modulo p, that is, all coefficientsin the resulting polynomial are reduced modulop . For example
>p =5
p:=5
> expand(a*b);
6x°-17x°+2x°+12x°+6x°-3x*+3x-12x>+3
> Expand(a*b) nod p;
xP+3x7+2x°+ 2B+ +2x +3x+3x3+3

The operationsrem(a,b,x) and quo(a,b,x) compute, respectively, the remainder r and quotient g of a
divided by b satisfyinga=b q +r withr =0 or deg(r) < deg(b). The corresponding operations for Z, are
Rem(a,b,x) mod p and Quo(a,b,x) mod p. For example
>r :=rema,b,x);

85 28 2

8528 2, 16
=077 9 X73% To7

3
X

\%

q := quo(a, b, x);

\%

expand(a = b*q+r);

2x°-3x°+3x+3=2x°-3x°+3x+3
Rem(a, b, x) nod p;

\Y
—
I

r=2x>+x"+2x
Quo(a, b, x) nod p;

> q
q:=4x"+x+3
> Expand(a = b*q+r) nod p;
2x°+2x°+3x+3=2x+2x°+3x+3

The commands gcd(a,b) and lcm(a,b) compute, respectively the greatest common divisor and |east
common multiple of two polynomials. The corresponding operations for Zp areGced(a,b) mod pand Lcm
(ab) mod p. For example
> gcd(xN4-2*x"2+2, xN4+1) ;

1
> Cod(xM4-2*x"2+2, xM+1) nod p;

X2 +2

The command gcdex(a,b,x,’s’,’'t") outputsg = GCD(a, b) . It also outputs through the input parameterss, t
integers satisfying the equationsa +t b =g and satisfying deg(s) < deg(b) and deg(t) <deg(a). The
corresponding command foer is Gcdex(ab,x,’s',’'t') mod p. For example
> gcdex(a, b, x,’s’,’t");

1
1>'s;
5024 201 4958 , 4734 , 2208 . 1188

- X+ X = X"+ X7 = X
25565 25565 25565 25565 25565 5113
expand(s*a+t*b);

4

\%

1

\%

Ccdex(a, b, x,’s’,’t’) nod p;
X2 +3x+1

U X+4
>t
XX +3x°+3x+4
> Expand(a*s+t*b) nod p;
X2 +3x+1
The commandirreduda) outputs true if the polynomial a(x) is irreducible and the command factor(a)
outputs the factorization of a(x) into irreducible factors over the integers. The corresponding commands
i foer are Irreduc(a) mod p and Factor(a) mod p. For example
1> factor(a);
2x8-3x>+3x+3

> factor(b);

BX*+2x+1)(x—-1)°
> Factor(a) nod 5;

2 (x+1) (x+4)°
> Factor(b) nod 5;
| 3(x+4)* (> +4x+2)
| The polynomial x? +x+1 isirreducible modulo 2
1> Factor(x"2+x+1) nod 2;
X2 +x+1

and hence the finite field of 4 elements can be represented by polynomials of degree < 2 over the integers

modulo 2, i.e. the polynomialsR ={0, 1, x+ 1, x} . We construct the multiplication table M for this
U finite field as follows.

17> R:=10,1,x, x+1];

M:= matrix(4,4);

R:=[0,1,x x+1]
M:=aray(1..4,1..4,[])

1> for i to 4 do
for j to 4 do Mi,j] := RemRi]*Rj],x"2+x+1,x) nod 2 od;
od;

>print(M;

i x+1 1 x 0O
| See ?mod for other operations on polynomials over the integers modulo p .

L 0>

