
MAPLE Notes for MACM 442 / MATH 800 / CMPT 881

Michael Monagan

Department of Mathematics

Simon Fraser University

August, 1998.

Updated August 2002, September 2004, September 2006.
> restart;
These notes are for Maple V Release 10. They are platform independent, i.e., they are the same for the
Macintosh, PC, and Unix versions of Maple. These notes should be backwards compatible with Maple 8 and
Maple 9.

Maple as a Calculator
Input of a numerical calculation uses +, -, *, /, and ^ for addition, subtraction, multiplication, division, and
exponentiation respectively.
> 1+2*3-2;

5
> 2^3;

8
> 120/105;

8

7
Because the input involved integers, not decimal numbers, Maple calculates the exact fraction when there
is a division, automatically cancelling out the greatest common divisor (GCD). In this case the GCD is
15, which you can calculate specifically as
> igcd(120,105);

15
Observe that every command ends with a semicolon ; This is a gramatical requirement of Maple. If you
forget, Maple will assume that the comand is not complete. This allows you to break long commands
across a line. For example
> 1+2*3/
> (2+3);

11

5
For some analysis with probabilities, we will need to use decimal arithmetic. The presence of a decimal
point . in a number means that the number is a decimal number and Maple will, by default, do all
calculations to 10 decimal places.
> 120/105.0;

1.142857143
> sqrt(2.0);

1.414213562
> sqrt(2);

2
Notice the difference caused by the presence of a decimal point in these examples. Now, if you have

input an exact quantity, like the 2 above, and you now want to get a numerical value to 3 decimal
digits, use the evalf command to evaluate to floating point. Use the % character to refer to the previous
Maple output.
> evalf(%,3);

1.41

To input a formula, just use a symbol, e.g. x and the arithmetic operators and functions known to Maple.
For example, here is a quartic polynomial in x .
> x^4-3*x+2;

− +x4 3 x 2
We are going to use this polynomial for a few calculations. We want to give it the name f so we can refer
to it later. We do this using the assignment operation in Maple as follows
> f := x^4-3*x+2;

 := f − +x4 3 x 2
The name f is now a variable. It refers to the polynomial. Here is it’s value
> f;

− +x4 3 x 2
To evaluate this as a function at the point =x 3 use the eval command as follows
> eval(f,x=3);

74
The following commands differentiate f with respect to x and factor f into irreducible factors over the field
of rational numbers.
> diff(f,x);

−4 x3 3
> factor(f);

()−x 1 ()+ + −x3 x2 x 2
You can graph functions using the plotting commands. The basic syntax for the plot command for a
function of one variable is illustrated as follows:

> plot(f,x=0.5..1.5);

In the graph I can see a local minimum near x=0.9. We can find this point using calculus. The command
fsolve(f(x)=0, x), on input of a polynomial f(x) computes 10 digit numerical approximations for the real
roots of f(x).
> fsolve(diff(f,x)=0,x);

0.9085602964
We have used the name f as variable to refer to formulae and the symbols x for an uknown in a formula.
Often you will have assigned to a name like we have done here to f but you want now to use the name f as
a symbol again, not as a variable. You can unassign the value of a name as follows
> f;

− +x4 3 x 2
> f := ’f’;

 := f f
> f;

f
To find out how to use Maple commands, such as plot, factor, eval, and diff, go to the Maple help page by
typing ?plot
and look at the examples. Do this now if you are using Maple for the first time. You will get a "help
window".
> ?eval
> ?plot
> ?diff
> ?fsolve
>

Integers
Here are some commands which do integer calculations that we will use in the course. Integers in Maple
are not limited to the precision of the hardware on your computer. They are limited by an internal limit of
Maple to approximately half a million digits. Any calculations that you do with large integers though will
take longer for larger integers. Here is 2100 .
> 2^100;

1267650600228229401496703205376
The command irem(a,b) computes the integer remainder of a divided by b. The command iquo(a,b)
computes the integer quotient of a divided by b. For example
> a := 20;

b := 7;

 := a 20

 := b 7
> r := irem(a,b);

 := r 6
> q := iquo(a,b);

 := q 2
It should be the case that a = b q + r . Let’s check
> a = b*q + r;

=20 20
The commands igcd(a,b) and ilcm(a,b) compute the greatest common divisor and least common multiple
of integers a and b, respectively.
> igcd(6,4);

2
> ilcm(6,4);

12
The command igcdex(a,b,’s’,’t’) outputs =g ()GCD ,a b . It also assigns ,s t integers satisfying the
equation =+s a t b g and satisfying <s b and <t a . So this command implements the extended
Euclidean algorithm. For example
> g := igcdex(3,5,’s’,’t’);

 := g 1
> s;

2
> t;

-1
> s*3+t*5;

1
The command isprime(n) outputs false if n is composite and true if n is prime.

The command ifactor(n) computes the integer factorization of an integer.
> isprime(997);

true
> isprime(1001);

false
> ifactor(1001);

() 7 () 11 () 13
For the RSA cryptosystem we need large primes, 100 digit primes. The command nextprime(n) outputs
the first prime greater than or equal to n and the command prevprime(n) finds the first prime less than or
equal to n. Here is the first 100 digit prime.

> prevprime(10^100);

99\

999999999999999999999203
Several of the cryptosystems require that we generate random primes, or primes with certain properties.
This needs to be done with some care. For example, the prime we just generated is not a good prime
simply because of the way we created it. We need a random prime. Note, Maple’s random number
generator rand(...) is a "pseudo-random-number-generator". It will always create the same sequence of
random numbers.
> R := rand(0..10^10-1);

 := R proc() end proc()()proc() end procoption ;builtin 391 , ,6 10000000000 34
So R is the random number generator. It’s a Maple procedure. You call it with no arguments to get
random numbers.
> R();

581869302
> R();

4161255391
For a list of integer commands see
> ?integer
>

Lists
The simplest data structure in Maple is a list. The elements of a list may be of any type. To create a list
of values enclose them in square brackets [,]. Lists may be nested of course and the entries may be of
any type.
> restart;

> E := []; # the empty list

 := E []
> L := [1,2,-3,4,1];

 := L [], , , ,1 2 -3 4 1
> M := [[1,2,3],[x,y,z]];

 := M [],[], ,1 2 3 [], ,x y z
To count the number of entries in a list use nops(L) command.
> nops(L);

5
> nops(M);

2
To access the i’th element of a list (counting from 1) use a subscript. A negative subscript counts from
the end.
> L[3];

-3
> L[-1];

1
> M[2];

[], ,x y z
> M[2][2];

y
Use the following to extract a sublist
> L[2..3];

[],2 -3

> L[2..-1];

[], , ,2 -3 4 1
To append (prepend) elements to a list use the following.
> op(L);

, , , ,1 2 -3 4 1
> [op(L),5];

[], , , , ,1 2 -3 4 1 5
To test if an element is in a list use
> member(2,L);

true
>

Loops
> restart;
To do a sequence of calculations it will be handy to know how to use some of Maple’s looping commands
and also the if command. To execute a command in Maple conditionally use the if command which has
either of the following forms

 if <condition> then <statements> else <statements> fi

or just

 if <condition> then <statements> fi

> if 2>1 then print(good) else print(bad) fi;

good
To execute one or more statements zero or more times in a loop use the for command. It has the
following form

 for <variable> from <start> to <end> do <statements> od

> for i from 1 to 5 do i^2; od;

1

4

9

16

25
To execute some statements while a condition is true use the while loop. It has the syntax

 while <condition> do <statements> od

In the following example we repeatedly divide an integer n by 2 until it is odd.
> n := 12; while irem(n,2) = 0 do n := iquo(n,2); od;

 := n 12

 := n 6

 := n 3
Here is a loop to calculate the GCD of two integers a and b using Euclid’s algorithm. Notice that this
loop has three statements in the body of the loop - between the do ... od, each of which is terminated by a

do od
semicolon. You don’t have to put them on the same line as I have done here.
> a := 64; b := 20;

 := a 64

 := b 20
> while b <> 0 do
> r := irem(a,b); a := b; b := r;
> od;

 := r 4

 := a 20

 := b 4

 := r 0

 := a 4

 := b 0
Thus 4 should be the GCD(64,20). A check with Maple
> igcd(64,20);

4
Two other useful looping constructs are the map command and the seq command. The examples show
what the commands do.
> L := [1,2,3,4,5];

 := L [], , , ,1 2 3 4 5
> map(f, L);

[], , , ,()f 1 ()f 2 ()f 3 ()f 4 ()f 5
> map(isprime, L);

[], , , ,false true true false true
> seq(f(n), n=L);

, , , ,()f 1 ()f 2 ()f 3 ()f 4 ()f 5
> seq(isprime(n), n=L);

, , , ,false true true false true
> L := [seq(n^2, n=L)];

 := L [], , , ,1 4 9 16 25
Read the help files for these commands, they are very handy.
> ?map
> ?seq
>

Modular Arithmetic
Modular arithmetic is done using the mod operator in Maple. By default, Maple uses the positive range
for the integers modulo m, that is, the result is calculated in the range .. 0 −m 1.
> restart;
> 12 mod 7;

5
> 2+3*3 mod 7;

4

To compute a
()−1

mod m, you can do either of the following
> 2^(-1) mod 7;

4
> 1/2 mod 7;

4

To compute an mod m you can do either
> 2 ^ 200 mod 7;

4
> 2 &^ 200 mod 7;

4

Use the latter. The difference is that in the first case, the integer 2200 was computed then reduced modulo
m . In the second case, all products were reduced modulo m so no large integers occured.
We will use a loop to verify that Fermat’s (little) theorem holds for p = 7.
> p := 7;

for i from 0 to p-1 do (i^p mod p) = i od;

 := p 7

=0 0

=1 1

=2 2

=3 3

=4 4

=5 5

=6 6
We can solve equations and systems of equations modulo n using the msolve command.
> msolve(6*x=4, 13);

{ }=x 5
> msolve(6*x=4, 26);

,{ }=x 5 { }=x 18
> msolve({24*a+b=5, 4*a+b=9, 18*a+b=1}, 26);

{ },=a +18 13 _Z2~ =b 15
The variable _Z2~ means any integer so the solutions are {b = 15, a = 18} and {b = 15, a = 5}.
>

Number Theory
Some relevant integer functions are available in the number theory package.

This shows how to load a package.
> restart;

with(numtheory);

Warning, the protected name order has been redefined and unprotected

GIgcd bigomega cfrac cfracpol cyclotomic divisors factorEQ factorset fermat imagunit index, , , , , , , , , , ,[

integral_basis invcfrac invphi issqrfree jacobi kronecker λ legendre mcombine mersenne, , , , , , , , , ,

migcdex minkowski mipolys mlog mobius mroot msqrt nearestp nthconver nthdenom nthnumer, , , , , , , , , , ,

nthpow order pdexpand φ π pprimroot primroot quadres rootsunity safeprime σ sq2factor, , , , , , , , , , , ,

sum2sqr τ thue, ,]
The command phi(n) computes ()φ n , the number of integers between 1 and n relatively prime to n.

Note this command is expensive because it factors n.
> phi(15);

8
The command mcombine(m1,u1,m2,u2) does Chinese remaindering to calculate the integer u satisfying

=u modui mi , for =i .. 1 2. For example
> u := mcombine(5,4,7,3);

 := u 24
> u mod 5;

4
> u mod 7;

3
The command msqrt(x,n) computes a square root of x modulo n if it exists and outputs FAIL otherwise.
Note this command factors n so this is also expensive if n is not prime.
> p := 11;

 := p 11
> msqrt(2,p);

FAIL
> msqrt(3,p);

5
> 5^2 mod p;

3
The command mlog(x,m,n) computes the discrete logarithm of x base m modulo n, i.e. finds y such that

=modym n x . Note this command is expensive. Like integer factorization, no polynomial time algorithm
is known for the discrete logarithm problem.
> x := 2 &^ 5 mod p;

 := x 10
> mlog(x,2,p);

5
>

Strings
A string is input as text inside " (string) quotes. For example
> restart;

A := "hello";

B := "there";

 := A "hello"

 := B "there"
The number of characters in a string is given by length(s).
> length(A);

5
The empty string is "". To access the i’th character from a string use A[i], e.g.
> A[1]; A[2];

"h"

"e"
Negative subscripts count from the end of the string where position -1 refers to the last character in the
string.
> A[-1]; A[-2];

"o"

"l"
If A is a string the notation A[i..j] selects the substring of characters from position i to j from A.
> A[1..2]; A[-2..-1];

"he"

"lo"
The command cat(s1,s2,...,sn) joins n strings together.

> cat(A," ",B);

"hello there"
The seq command can be used to extract the sequence of characters from a string and we can put them
back together using the cat command.
> C := seq(A[i], i=1..length(A));

 := C , , , ,"h" "e" "l" "l" "o"
> cat(C);

"hello"
Here is how you would extract all trigrams from a string.
> seq(A[i..i+2], i=1..length(A)-2);

, ,"hel" "ell" "llo"
There is more if you need it. See
> ?string
> ?StringTools
> with(StringTools):
Warning, the assigned name Group now has a global binding

> A;

"hello"
> Search("l",A);

3
> SearchAll("l",A);

,3 4
Hence the frequency of the letter "l" in the string A is
> nops([SearchAll("l",A)]);

2
>

Maple Functions and Procedures
A simple function, like the function ek(x) = a*x+b mod n may be input using the arrow notation in Maple,
as follows
> ek := x -> 3*x+5 mod 26;

 := ek →x mod()+3 x 5 26
> ek(1); ek(7);

8

0
We create the inverse function
> 1/3*(y-5) mod 26;

+9 y 7
> dk := y -> 9*y+7 mod 26;

 := dk →y mod()+9 y 7 26
> dk(8); dk(0);

1

7
So if we have encoded some text "BUYIBM" as a list of integers [1,20,24,8,1,12] we can encrypt it and
decrypt it as follows.
> plaintext := [1,20,24,8,1,12];

 := plaintext [], , , , ,1 20 24 8 1 12
> ciphertext := map(ek,plaintext);

 := ciphertext [], , , , ,8 13 25 3 8 15
> map(dk,ciphertext);

[], , , , ,1 20 24 8 1 12
For the Hill cipher, we which takes two inputs x1 and x2 and outputs two outputs y1 and y2 we will use a
Maple procedure rather than the arrow functions.
A procedure in Maple takes the form

 proc(p1, p2, ...)

 local l1, l2, ... ;

 global g, g2, ... ;

 statement1;

 statement2;

 statementn;

 end proc

There may be zero or more parameters, one or more locals, one or more globals and one or more
statements in the procedure body.

The local and global statements are optional. Variables in the procedure body that are not explicitly
declared as parameters, locals, or globals are declared to be local automatically if assigned to, otherwise
they are global. The value returned by the procedure is the value of statementn, the last statement in the
body of the procedure or the value of an explicit return statement. Type declarations for parameters and
local variables need not be explicitly given. Some examples will help.
> f := proc(x) y := x^2; y-1; end proc;
Warning, ‘y‘ is implicitly declared local to procedure ‘f‘

 := f proc() end procx local ;y ; := y ^x 2 −y 1
> f(2);

3
> f(z);

−z2 1
This next example searches a string s for the letter x. It outputs the position of the first occurrence of x in
s and 0 otherwise. I am also telling Maple that the inputs should be of type string. Below is an example
with inputs of type integer. See ?type for how to specify types and for what types are available if you
need them.
> position := proc(x::string,s::string) local i;

 for i from 1 to length(s) do if s[i]=x then return i fi; od;

 0; # meaning x is not in the list

end proc;

position :=

proc() end proc,::x string ::s string local ;i ;for to do end doi ()length s if then end if=[]s i x return i 0
> position("U","BUYIBM");

2
> position("V","BUYIBM");

0
> position(5,"BUYIBM");
Error, (in position) invalid input: position expects its 1st argument, x, to be of
type string, but received 5

Okay, now let’s code the Hill cipher. It is a function of two arguments x1 and x2 (integers) and it outputs
two values y1 and y2.

> e := proc(x1,x2) local y1,y2;

 y1 := 11*x1+3*x2 mod 26;

 y2 := 8*x1+7*x2 mod 26;

 (y1,y2);

end proc:

> x := plaintext;

 := x [], , , , ,1 20 24 8 1 12
> e(x[1],x[2]);

,19 18
> ciphertext := [seq(e(x[2*i+1],x[2*i+2]), i=0..iquo(nops(x),2)-1)];

 := ciphertext [], , , , ,19 18 2 14 21 14
Now to decrypt we need the inverse of this function. We compute the inverse of the corresponding matrix
mod 26
> A := Matrix([[11,3],[8,7]]);

 := A










11 3

8 7
> Inverse(A) mod 26;











7 23

18 11
For the decryption function I’ll use Maple’s -> notation instead of a procedure. Let’s check that d is the
inverse of e then decrypt the ciphertext.
> d := (y1,y2) -> (7*y1+23*y2 mod 26, 18*y1+11*y2 mod 26);

 := d →(),y1 y2 (),mod()+7 y1 23 y2 26 mod()+18 y1 11 y2 26
> d(e(x1,x2));

,x1 x2
> e(d(x1,x2));

,x1 x2
> y := ciphertext;

 := y [], , , , ,19 18 2 14 21 14
> [seq(d(y[2*i+1],y[2*i+2]), i=0..2)];

[], , , , ,1 20 24 8 1 12
This last example is an implementation of the Euclidean algorithm.
> EuclideanAlgorithm := proc(a::integer,b::integer) local c,d,r;

 (c,d) := (abs(a),abs(b));

 while d <> 0 do r := irem(c,d); (c,d) := (d,r); od;

 c;

end proc;

EuclideanAlgorithm ,::a integer ::b integerproc() :=

local ;, ,c d r

; ; := ,c d ,()abs a ()abs b while do end do≠d 0 ; := r ()irem ,c d := ,c d ,d r c

end proc
> EuclideanAlgorithm(24,210);

6
Procedures may be nested, nested lexical scoping is used (a la Pascal).

Procedures may be returned and passed freely as parameters.

The simplest debugging tool is to insert print statements in the procedure. For example
> EuclideanAlgorithm := proc(a::integer,b::integer) local c,d,r;

 (c,d) := (abs(a),abs(b));

 (c,d) := (abs(a),abs(b));

 while d <> 0 do r := irem(c,d); print(r); (c,d) := (d,r); od;

 c;

end proc:

> EuclideanAlgorithm(24,210);

24

18

6

0

6
The next simplest debugging tool is the trace command. All assigment statements are displayed.
> trace(EuclideanAlgorithm);

EuclideanAlgorithm
> EuclideanAlgorithm(24,210);
{--> enter EuclideanAlgorithm, args = 24, 210

 := ,c d ,24 210

 := r 24

24

 := ,c d ,210 24

 := r 18

18

 := ,c d ,24 18

 := r 6

6

 := ,c d ,18 6

 := r 0

0

 := ,c d ,6 0

6
<-- exit EuclideanAlgorithm (now at top level) = 6}

6
There is more. See ?proc if you need more information or more tools.
>

Subscripted Names and String Utilities
Variables may be subscripted. For example, here is a polynomial in x1,x2,x3. You can assign to the
subscripts.
> restart;
> f := 1-x[1]*x[2]*x[3];
> x[1] := 3;

 := f −1 x1 x2 x3

 := x1 3
> f;

−1 3 x2 x3

There may be more than one subscript and the subscripts may be any value. For example, we may wish
to record the numerical code for each letter of an alphabet. We could do this
> code["A"] := 0;

code["B"] := 1;

 := code"A" 0

 := code"B" 1

etc. Basically, code is now a table (a hash table) with two entries. We can access an entry as follows
> code["B"];

1
> code["C"];

code"C"

So given the following alphabet we can define the code of each letter in a loop. We also do the opposite.
> alphabet := "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 := alphabet "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
> N := length(alphabet);

 := N 26
> for i from 0 to N-1 do

 x := alphabet[i+1];

 code[x] := i;

 char[i] := x;

 od:

We give procedures encode and decode to convert a string to a list of codes and back.
> encode := proc(s::string) local i;

 [seq(code[s[i]], i=1..length(s))];

end:

> decode := proc(x::list(integer)) local i,n;

 n := nops(x);

 cat(seq(char[x[i]], i=1..nops(x)));

end:

> c := encode("BUYIBM");

 := c [], , , , ,1 20 24 8 1 12
> decode(c);

"BUYIBM"
We can use tables to count the frequency of each letter in a piece of plaintext s as follows.
> s := "THISISTHEDAYTHATTHELORDHASMADE";

 := s "THISISTHEDAYTHATTHELORDHASMADE"
First we initialize the table entries to 0. Then compute the frequencies
> F := table(): # create an empty table

for i from 0 to 25 do F[char[i]] := 0 od:

> n := length(s);

for i to n do x := s[i..i]; F[x] := F[x]+1; od:

 := n 30
Now we convert to a list and use the sort command to sort in decreasing order. How to do this. We create
a list of the form [[x1,f1], [x2,f2], ...] where each x is a letter and the f it’s corresponding frequency then
sort it then covert to probabilities.
> T := [seq([char[i],F[char[i]]], i=0..25)];

T [],"A" 4 [],"B" 0 [],"C" 0 [],"D" 3 [],"E" 3 [],"F" 0 [],"G" 0 [],"H" 5 [],"I" 2 [],"J" 0, , , , , , , , , ,[:=

[],"K" 0 [],"L" 1 [],"M" 1 [],"N" 0 [],"O" 1 [],"P" 0 [],"Q" 0 [],"R" 1 [],"S" 3 [],"T" 5 [],"U" 0, , , , , , , , , , ,

[],"V" 0 [],"W" 0 [],"X" 0 [],"Y" 1 [],"Z" 0, , , ,]
> sort(T, proc(x,y) if x[2]>y[2] then true else false fi end);

[],"T" 5 [],"H" 5 [],"A" 4 [],"S" 3 [],"E" 3 [],"D" 3 [],"I" 2 [],"Y" 1 [],"R" 1 [],"O" 1 [],"M" 1, , , , , , , , , , ,[

[],"L" 1 [],"Z" 0 [],"X" 0 [],"W" 0 [],"V" 0 [],"U" 0 [],"Q" 0 [],"P" 0 [],"N" 0 [],"K" 0 [],"J" 0, , , , , , , , , , ,

[],"G" 0 [],"F" 0 [],"C" 0 [],"B" 0, , ,]

> q := [seq(char[i-1]=evalf(T[i][2]/n,3), i=1..26)];

q ="A" 0.133 ="B" 0. ="C" 0. ="D" 0.100 ="E" 0.100 ="F" 0. ="G" 0. ="H" 0.167, , , , , , , ,[:=

="I" 0.0667 ="J" 0. ="K" 0. ="L" 0.0333 ="M" 0.0333 ="N" 0. ="O" 0.0333 ="P" 0. ="Q" 0., , , , , , , , ,

="R" 0.0333 ="S" 0.100 ="T" 0.167 ="U" 0. ="V" 0. ="W" 0. ="X" 0. ="Y" 0.0333 ="Z" 0., , , , , , , ,]
>

Polynomials and Finite Fields
Polynomials in Maple are simply input as formulae using the arithmetic operators. For example
> restart;

x^4-3*x^2+12;

− +x4 3 x2 12
is a polynomial in one variable, x with integer coefficients. Here is a polynomial in two variables.
> a := (x-y)*(x^2-y^2)*(x^3-y^3);

 := a ()−x y ()−x2 y2 ()−x3 y3

To multiply the factors of the polynomial out use the expand command
> expand(a);

− + − + −x6 x4 y2 x y5 y x5 y4 x2 y6

To factor the polynomial into prime factors with integer coefficients use the factor command
> factor(a);

−()−y x 3 ()+y x ()+ +y2 y x x2

We will only need polynomials in one variable and mostly work in the ring Zp[x] where p will be a
prime integer. In what follows we show operations for Zp[x] and also Q[x]. For help for operations for
polynomials see ?polynomial. For help for operations in Zp[x] see ?mod.

Here are two polynomials
> a := 2*x^6-3*x^5+3*x+3;

 := a − + +2 x6 3 x5 3 x 3
> b := 3*x^4-4*x^3+1;

 := b − +3 x4 4 x3 1
The command eval(a(x), x=k) evaluates the polynomial a(x) at x = k. The command Eval(a, x=k) mod
p does this modulo p . For example
> eval(a, x=2);

41
> Eval(a, x=2) mod 7;

6
Here is how we can tabulate the values of this polynomial for all values in Z7. We conclude that a(x) has
no roots.
> seq(Eval(a,x=i) mod 7, i=0..6);

, , , , , ,3 5 6 6 4 4 5
We can interpolate a polynomial from it’s values as follows
> a;

− + +2 x6 3 x5 3 x 3
> X := [seq(i,i=0..8)];

 := X [], , , , , , , ,0 1 2 3 4 5 6 7 8
> Y := [seq(eval(a,x=i), i=0..8)];

 := Y [], , , , , , , ,3 5 41 741 5135 21893 70005 184901 426011
> interp(X,Y,p);

− + +2 p6 3 p5 3 p 3

The command expand(a*b) multiplies out the product a b. The command Expand(a*b) mod p does the
product modulo p, that is, all coefficients in the resulting polynomial are reduced modulo p . For example
> p := 5;

 := p 5
> expand(a*b);

− + + + − + − +6 x10 17 x9 2 x6 12 x8 6 x5 3 x4 3 x 12 x3 3
> Expand(a*b) mod p;

+ + + + + + + +x10 3 x9 2 x6 2 x8 x5 2 x4 3 x 3 x3 3
The operations rem(a,b,x) and quo(a,b,x) compute, respectively, the remainder r and quotient q of a
divided by b satisfying =a +b q r with =r 0 or <()deg r ()deg b . The corresponding operations for Zp are

Rem(a,b,x) mod p and Quo(a,b,x) mod p . For example
> r := rem(a,b,x);

 := r + − −
85

27

28

9
x

2

3
x2 16

27
x3

> q := quo(a,b,x);

 := q − −
2

3
x2 1

9
x

4

27
> expand(a = b*q+r);

=− + +2 x6 3 x5 3 x 3 − + +2 x6 3 x5 3 x 3
> r := Rem(a,b,x) mod p;

 := r + +2 x3 x2 2 x
> q := Quo(a,b,x) mod p;

 := q + +4 x2 x 3
> Expand(a = b*q+r) mod p;

=+ + +2 x6 2 x5 3 x 3 + + +2 x6 2 x5 3 x 3
The commands gcd(a,b) and lcm(a,b) compute, respectively the greatest common divisor and least
common multiple of two polynomials. The corresponding operations for Zp are Gcd(a,b) mod p and Lcm
(a,b) mod p. For example
> gcd(x^4-2*x^2+2,x^4+1);

1
> Gcd(x^4-2*x^2+2,x^4+1) mod p;

+x2 2
The command gcdex(a,b,x,’s’,’t’) outputs =g ()GCD ,a b . It also outputs through the input parameters ,s t
integers satisfying the equation =+s a t b g and satisfying <()deg s ()deg b and <()deg t ()deg a . The
corresponding command for Zp is Gcdex(a,b,x,’s’,’t’) mod p. For example
> gcdex(a,b,x,’s’,’t’);

1
> s;

− + − + −
5024

25565

201

25565
x

4958

25565
x3 4734

25565
x2 2208

25565
x5 1188

5113
x4

> expand(s*a+t*b);

1
> Gcdex(a,b,x,’s’,’t’) mod p;

+ +x2 3 x 1
> s;

+x 4
> t;

+ + +x3 3 x2 3 x 4
> Expand(a*s+t*b) mod p;

+ +x2 3 x 1
The command irreduc(a) outputs true if the polynomial ()a x is irreducible and the command factor(a)
outputs the factorization of ()a x into irreducible factors over the integers. The corresponding commands
for Zp are Irreduc(a) mod p and Factor(a) mod p. For example
> factor(a);

− + +2 x6 3 x5 3 x 3
> factor(b);

()+ +3 x2 2 x 1 ()−x 1 2

> Factor(a) mod 5;

2 ()+x 1 ()+x 4 5

> Factor(b) mod 5;

3 ()+x 4 2 ()+ +x2 4 x 2

The polynomial + +x2 x 1 is irreducible modulo 2
> Factor(x^2+x+1) mod 2;

+ +x2 x 1
and hence the finite field of 4 elements can be represented by polynomials of degree < 2 over the integers
modulo 2, i.e. the polynomials R = { }, , ,0 1 +x 1 x . We construct the multiplication table M for this
finite field as follows.
> R := [0,1,x,x+1];

M := matrix(4,4);

 := R [], , ,0 1 x +x 1

 := M ()array , , .. 1 4 .. 1 4 []
> for i to 4 do

 for j to 4 do M[i,j] := Rem(R[i]*R[j],x^2+x+1,x) mod 2 od;

od;

> print(M);













0 0 0 0

0 1 x +x 1

0 x +x 1 1

0 +x 1 1 x
See ?mod for other operations on polynomials over the integers modulo p .
>

