
> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

Programming in Maple: Some Notes

Michael Monagan
Department of Mathematics

Simon Fraser University
Fall 2013.

These notes will work in any version of Maple from Maple 6.

Lists
The simplest data structure in Maple is a list. The elements of a list may be of any
type. To create a list of values enclose them in square brackets [,]. Lists may be
nested.
E := []; # the empty list

L := [1,2,-3,4,1];

M := [[1,2,3],[x-1,x^2-1,x^3-1]];

To count the number of entries in a list use nops(L) command.
nops(L);

To access the i'th element of a list (counting from 1) use a subscript.
L[3];

M[2];

M[2][2];

A negative subscript counts from the end. So here is the last element.
L[-1];

Use the following to extract a sublist
L[2..3];

L[2..-1];

To append (prepend) elements to a list use the following.
op(L);

> >

> >

> >

> >

> >

> >

> >

L := [op(L),5];

To test if an element is in a list use
member(2,L);

Lists are used by many Maple commands. For example, many of the graphing
commands takes lists of points or lists of functions as inputs. For example, to
plot sin(x) and cos(x) on the same graph do
L := [sin(x),cos(x)];

plot(L, x=-2*Pi..2*Pi, color=[red,blue]);

Although you can assign to an entry of a list (as if it were an array) if the list has
less than 100 elements, do not do this. It creates a copy of the entire list. So it's
not efficient. Use Arrays .
L[2] := 10;

L;

Sets
Maple also supports sets. Maple uses squiggley brackets { } for sets. For example
{1,3,5}. Sets differ from lists in that the only one copy of each element is kept
and the elements are sorted. Otherwise many of the commands that work for
lists, such as subscripts, also work exactly the same way for sets. Here are some
examples.
S := {1,5,3,1};

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

T := {2,3,4};

S[2];

The number of elements of a set |S| is given by
nops(S);

To test if an element x is in a set use member
member(5,S);

The set operations union, intersection and set difference are
S union T;

S intersect T;

S minus T;

The empty set
phi := {};

phi union S;

You can insert a new element in a set in two ways, either using union or, like lists,
using op
S union {9};

{op(S),9};

The elements of a set may be of any type. Here is a set of equations
eqns := { x+2*y=1, 3*x-z=2, x+y+z=0 };

Many Maple commands take sets of objects as input. For example, the solve
command takes a set (or list) of equations as input and a set of unknowns to solve
for and outputs the solution as a set (list).
sol := solve(eqns, {x,y,z});

> >

> >

> >

> >

> >

> >

> >

> >

If statements
restart;

To execute a command in Maple conditionally use the if command which has
either of the following forms

 i f <condit ion> then <statements> else <statements> f i

or just

 i f <condit ion> then <statements> f i

For example,
x := 2;

if x>1 then print(good); else print(bad); fi;

The if statement can be nested. For example
if x>1 then if x>2 then print("x > 2"); else print("x > 1");
fi; else print("x < 2"); fi;

Although you can put it all on one line like that it's best to split it accross multiple
lines. Use SHIFT-ENTER to get a new line.
if x>1 then
 if x>2 then print("x > 2");
 else print("x > 1");
 fi;
else
 print("x < 2");
fi;

The boolean operators in Maple are and, or, and not. The relational operators in
Maple are =, >, <, >=, <=, and <> for not equals.
x := 2;
if x >= 1 and x <= 3 then x := x+1; fi;

Loops.
restart;

> >

> >

> >

> >

To execute one or more statementsin a loop use the for command. It has the
following form

 for <variable> from <start> to <end> do <statements> od

for i from 1 to 5 do i^2; od;

for i from 1 to 5 do i; isprime(i); od;

To execute some statements while a condition is true use the while loop. It has
the syntax

 while <condit ion> do <statements> od

i := 1;
while i <= 5 do i^2; i := i+1; od;

> >

> >

> >

> >

> >

There is quite a bit of output there. You can see each assignment and each square
displayed. To suppress the output of a loop (or any Maple statement) use :
instead of ; But then we won't see any output. We can override the : by using
print(i^2) to see the squares like this. Notice I put a : on the i := 1: as well.
i := 1:
while i<=5 do print(i^2); i := i+1; od:

As a second example, we find the first prime bigger than 2. We only consider the
odd integers.
p := 33;
while not isprime(p) do p := p+2; od:

p;

 In a Maple for loop, you can count by a different value using the by clause. The
general form is this

 for <variable> from <start> by <increment> to <end> do <statements>
od

Also handy is that you can exit a loop using the break command. Here we find the
first prime bigger than 31 using a for loop.

for p from 33 by 2 do
 print(testing(p));
 if isprime(p) then break; fi;
od:
p;

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

Notice that I didn't specify a to clause . All the clauses are optional. The defaults
are

 from 1
 to infinity
 by 1
As a final example here is a loop that generates some polynomials
for n to 6 do n = factor(x^n-1) od;

Three other useful looping constructs are the map command and the seq
command and the add command. The examples show what the commands do.
L := [1,2,3,4,5];

map(f, L);

map(isprime, L);

seq(i^2, i=1..5);

seq(L[i], i=1..nops(L));

seq(isprime(L[i]), i=1..nops(L));

seq(L[i]*x^(i-1), i=1..nops(L));

L := [seq(n^2, n=L)];

add(f(i), i=1..5);

add(i^2, i=1..5);

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

add(x[i], i=0..5);

add(x^i, i=0..5);

Read the help files for these commands, they are very handy.
?map

?seq

?add

Maple Functions and Procedures
Maple has a special syntax for inputting a simple function like . You
may input using the arrow notation in Maple, as follows
f := x -> x^2+1;

Now you can apply the function to values in the usual notation
f(2);

f(0.5);

f(z);

A procedure in Maple takes the form

 proc(p1, p2, ...)
 local l1, l2, ... ;
 global g, g2, ... ;
 statement1;
 statement2;

 statementn;
 end proc

There may be zero or more parameters, one or more locals, one or more globals
and one or more statements in the procedure body.
The local and global statements are optional. Variables in the procedure body that
are not explicitly declared as parameters, locals, or globals are declared to be local
automatically if assigned to, otherwise they are global. The value returned by the
procedure is the value of statementn, the last statement in the body of the
procedure or the value of an explicit return statement. Type declarations for
parameters and local variables need not be explicitly given. Some examples will

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

help.
f := proc(x) y := x^2; y+1; end proc;

Warning, `y` is implicitly declared local to procedure `f`

f(2);

f(z);

Notice that Maple made the variable y local for us. To avoid the warning, we
should declare it local ourselves. Also, you can break a procedure over more than
one line - and you should unless it is a simple function.
f := proc(x)
local y;
 y := x^2;
 y+1;
end proc;

This next example searches a list L for the value x. It outputs the position of the
first occurrence of x in L and 0 otherwise. The example also uses an explicit
return. When return x is executed, Maple immediately returns the value of x as
the result of the procedure. I've also used a Maple comment. Anything following
the # character on a line is treated as a comment and ignored by Maple.

position := proc(x,L) local i;
 for i from 1 to nops(L) do
 if L[i]=x then return i fi;
 od;
 0; # meaning x is not in the list
end proc;

position(x,[u,v,w,x,y,z]);

position(y,[u,v,w]);

This next example is a Maple procedure which returns the next prime bigger than
the input. I am also telling Maple that the input parameter n must be an integer.
If it's not, an error will be generated. See ?type for a list of other allowable types.
NextPrime := proc(n::integer)

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

local x;
 x := n+1;
 while not isprime(x) do x := x+1; od;
 x;
end proc;

NextPrime(2);

NextPrime(1000);

NextPrime(2/3);
Error, invalid input: NextPrime expects its 1st argument, n, to be of type
integer, but received 2/3

Now I'm going to redo this example. The first difference is that I'm going to use a
: on the end proc: to suprress the output. The second difference is that I'm going
to count by 2 (because that's more efficient). So I need to start with the first odd
number bigger than n.
NextPrime := proc(n::integer)
local x;
 if irem(n,2)=0 then x := n+1; else x := n+2; fi;
 while not isprime(x) do x := x+2; od;
 x;
end proc:

NextPrime(1000);

There is one major difference between Maple and most other programming
languages like C and Java. The parameters to a procedure cannot be used like
local variables. You cannot assign to parameters. If you try to, you will get an
error. Let's redo the NextPrime example where we simply add 1 or 2 to n to make
it the next odd number then use n in the procedure instead of the local variable x.
You may have wondered why I did that.
NextPrime := proc(n::integer)
 if irem(n,2)=0 then n := n+1; else n := n+2; fi;
 while not isprime(x) do n := n+2; od;
 n;
end proc:

NextPrime(1000);
Error, (in NextPrime) illegal use of a formal parameter

The error occurs because when Maple executes n := n+1 it substitutes the
parameter 1000 for n and tries to execute 1000 := 1000+1 which doesn't make

> >

> >

> >

> >

> >

> >

> >

any sense. Well, that's the way Maple does it. So we need to use a local variable x
like I did.
Procedures may be nested.
Procedures may be returned and passed freely as parameters.
The simplest debugging tool is to insert print statements in the procedure. For
example
NextPrime := proc(n::integer)
local x;
 if irem(n,2)=0 then x := n+1; else x := n+2; fi;
 while not isprime(x) do print(x); x := x+2; od;
 x;
end proc:

NextPrime(1000);

The next simplest debugging tool is the trace command. All assigment statements
are displayed.
trace(NextPrime);

NextPrime(1000);
{--> enter NextPrime, args = 1000

<-- exit NextPrime (now at top level) = 1009}

The printf command can be used to print more detailed information in a
controlled format. It works just like the printf command in the C language. The
main difference is the %a option for printing algebraic objects like polynomials.

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

But %a works for anything. E.g.
printf("A polynomial %a\n", x^2-2*y*x);

A polynomial x^2-2*y*x

NextPrime := proc(n::integer)
local x;
 if irem(n,2)=0 then x := n+1; else x := n+2; fi;
 while not isprime(x) do
 printf("%a is not prime\n",x);
 x := x+2;
 od;
 x;
end proc:

NextPrime(1000);
1001 is not prime
1003 is not prime
1005 is not prime
1007 is not prime

There is more. But this should be enough for the course. See ?proc if you need
more information or more tools.

Subscripted Names and Arrays
Variables may be subscripted. For example, here is a polynomial in .
You can assign to the subscripts.
restart;

f := 1-x[1]*x[2]*x[3];
x[1] := 3;

f;

There may be more than one subscript and the subscripts may be any value.
Arrays are like arrays from computing science. Here is how to create a one-
dimensional array A with values indexed from 1 to 5.
A := Array(1..5);

By default, the entries in the array A are initialized to 0.
A[1] := 3;

A[1];

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

for i from 2 to 5 do A[i] := 3*A[i-1] od;

Often you will want to convert an Array to a list or a list to an Array. Use the
following. For Array to list use
L := convert(A,list);

For list to Array use
A := Array(1..5,L);

Oh, they look the same. Let's check
whattype(L);

whattype(A);

So what's the difference? In an Array you can change a value in constant time. So
when we do
A[3] := 10;

It doesn't matter how long the Array is, this takes a fixed amount of time. This is
not the case for lists.
The last thing I want to mention is that you should not build up a list of items one
at a time. For example, do not do this
L := []:
for i from 1 to 6 do
 L := [op(L),i^2];
od;

Why not? Because each time you add the next square to the list, Maple makes a

> >

> >

> >

> >

> >

> >

> >

copy of all the previous elements. So the amount of space that it uses is 1 + 2 + 3
+ 4 + 5 + 6 words. If we keep doing this we will use a quadratic amount of space

because the sum of the first n integers is . Instead, use an Array like this

and then convert the Array to a list if you want a list.
A := Array(1..6):
for i from 1 to 6 do A[i] := i^2; od;
L := convert(A,list);

I'm going to time this (in CPU seconds) for the first n integers so you can see the
difference.
n := 5000;

st := time():
L := []:
for i to n do L := [op(L),i^2] od:
time()-st;

st := time():
A := Array(1..n):
for i to n do A[i] := i^2 od:
L := convert(A,list):
time()-st;

