Find the isomorphisms between the finite fields $F = \mathbb{Z}3[y]/(y^2 + 1)$ and $G = \mathbb{Z}3[y]/(y^2 + 2 \cdot y + 2)$ with 9 elements. I'm using functions for the polynomials.

```
> p := 3;

f := x -> x^2+1;

g := x -> x^2+2*x+2;

p:=3

f:=x \rightarrow x^2 + 1

g:=x \rightarrow x^2 + 2 + 2 (1)
```

Because now I can write

> f(y); g(z);

$$y^{2} + 1$$

$$z^{2} + 2z + 2$$
 (2)

By construction, [y] in F is a root of $f = x^2 + 1$. The other root is [2y]. We need to find the roots of f(x) in G. So let's try them all. **Make sure you write g(y) here, to get the polynomial in y!**

There are two roots, y + 1 and $2 \cdot y + 2$ hence two isomorphisms.

```
> beta1 := y+1; beta2 := 2*y+2; \beta 1 := y+1 \beta 2 := 2 y+2 (4)
```

Define $\varphi: F \to G$. You can do it this way in Maple using := which is nice.

```
The following functionality of seq if nice. You iterate over all elements a \in F by doing
```

> seq(a, a=F);

$$0, 1, 2, y, y+1, y+2, 2y, 2y+1, 2y+2$$
 (5)

Now check that $\varphi(a+b) = \varphi(a) + \varphi(b)$ and $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$ for all a, b in F. I'm going to use the function

- > seq(seq(phi(Rem(a*b,f(y),y) mod 3) Rem(phi(a)*phi(b), g(y),
 y) mod 3, a=F), b=F);

Exercise: Find the isomorphisms between $F = \mathbb{Z}2[y]/(y^3 + y + 1)$ and $G = \mathbb{Z}2[y]/(y^3 + y^2 + 1)$, finite fields with 8 elements. Verify that $f(x) = x^3 + x^2 + 1$ has 3 roots in F and 3 roots in G.

> >