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1.1 Definition and Examples

We begin with the definition of an ideal in a commutative ring. Ideals in non-commutative
rings can be defined but we will not study them here.

Definition 1.1.1. Let R be a commutative ring. A subset of I of R is an ideal of R if

(i) 0R ∈ I,

(ii) if a, b ∈ I then a− b ∈ I, and

(iii) if a ∈ I and r ∈ R then ar = ra ∈ I.

Observe that the set I = {0R} is an ideal of R. Also, the entire ring R is an ideal of R.
These two ideals are called the trivial ideals. An example of non-trivial ideal is the set of
even integers.

2Z = {. . . ,−4,−2, 0, 2, 4, . . . }.

This is an ideal in Z because if a, b are even integers, and r is any integer, we have a− b
is even and ar is even. Now the even integers are also a subring of Z. There is a relation
between ideals and subrings, namely, all ideals are subrings but not all subrings are ideals.
We recall the test for a subring of a ring. See Lemma 2.2.4.

Subring Test Let R be a ring. A subset of S of R is a subring of R if

(1) S is not empty,

(2) if a, b ∈ S then −a ∈ S and a+ b ∈ S, and

(3) if a, b ∈ S then ab ∈ S.

Some texts will have 0R ∈ S instead of S is not empty for condition (1). The two
conditions are in fact equivalent. Furthermore condition (2) in the test for a subring and
condition (ii) in the definition for an ideal are also equivalent conditions. Let us state and
prove this formally.

Lemma 1.1.2. Let S and I be as above. Then (i) S is closed under subtraction and (ii) I
is closed under addition and negation.
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Proof. (i) Let a, b ∈ S. Then a− b = a+ (−b). Since −b ∈ S and S is closed under addition
thus a − b ∈ S. (ii) Let a, b ∈ I. Then 0R − a ∈ I. But 0R − a = −a ∈ I thus I is
closed under negation. Also a + b = a − (−b) = a − (0R − b) ∈ I. Thus I is closed under
addition.

Property (iii) in the definition for ideals means I is closed under multiplication hence
every ideal in R is a subring. However, it is not the case that every subring is an ideal. The
following Lemma leads to such examples.

Lemma 1.1.3. Let R be a commutative ring with identity and let I be an ideal in R. If a
unit u ∈ I then I = R.

Proof. Let y be the inverse of u. Then yu ∈ I by (iii) and yu = 1. But 1 ∈ I implies all
elements are of R are in I by (iii). That is, R ⊂ I and hence I = R.

It follows that if R is a field then the only ideals in R are the trivial ideals {0R} and R.
We have seen examples where a field F can have a proper subfields. For example, GF(16)
has a subfields GF(2) and GF(4). Also Z is the constant subring of Z[x] but Z is not an
ideal in Z[x].

We now consider how to construct ideals from elements in R.

Definition 1.1.4. Let R be a commutative ring. For a ∈ R let us define

〈a〉 = {ab : b ∈ R}

which is all multiplies of a by R. More generally, for a1, . . . , an ∈ R let us define

〈a1, . . . , an〉 = {
∑n

i=1 aibi : bi ∈ R} .

Lemma 1.1.5 below proves that these sets are ideals in R. The set 〈a1, . . . , an〉 is called the
ideal generated by {a1, ..., an} and the elements {a1, ..., an} are called generators. An ideal
〈a〉 generated by a single element a is called a principle ideal. It turns out that all ideals in
Z and F [x] where F is a field are principle ideals.

Lemma 1.1.5. Let R be a commutative ring. The set I = 〈a1, . . . , an〉 is an ideal of R.

Proof. We must prove properties (i), (ii) and (iii) for an ideal.

(i) Take bi = 0R. Then
∑n

i=1 aibi =
∑n

i=1 ai0R = 0R. Since the sum is in I by definition
of 〈 〉 we have 0R ∈ I.

(ii) Let f and g be in I. Then f =
∑n

i=1 aifi for some fi ∈ R and g =
∑n

i=1 aigi for some
gi ∈ R. Now f − g =

∑n
i=1 aifi −

∑n
i=1 aigi =

∑n
i=1 ai(fi − gi) ∈ I since fi − gi ∈ R.

(iii) Let f be in I and h ∈ R. Then f =
∑n

i=1 aifi for some fi ∈ R. Now hf = fh =∑n
i=1(aifi)h =

∑n
i=1 ai(fih) ∈ I since fih ∈ R.
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In Z the ideal 〈6〉 = {6b : b ∈ Z} is all multiples of 6. In Q[x] the ideal 〈x〉 = {fx : f ∈
Q[x]} is all polynomials in Q[x] divisible by x.

Example 1.1.6. Find all ideals in Z6. One way to do this is to start with {0} and consider
including each non-zero element of Z6 and adding elements until the set is closed under +
and see if we have an ideal. We get the following ideals

0 {0} = 〈0〉
1 {0, 1, 1 + 1 = 2, 1 + 2 = 3, 1 + 3 = 4, 1 + 4 = 5} = 〈1〉
2 {0, 2, 2 + 2 = 4} = 〈2〉
3 {0, 3} = 〈3〉
4 {0, 4, 4 + 4 = 2} = 〈2〉
5 {0, 5, 5 + 5 = 4, 5 + 4 = 3, 5 + 3 = 2, 5 + 2 = 1} = 〈1〉

Thus we obtain the trivial ideals 〈0〉, 〈1〉 and non-trivial ideals 〈2〉, 〈3〉 and conclude that
all ideals in Z6 are principle ideals. And we observe a one to one correspondence between
the subrings of Z6 and the ideals of Z6.

Lemma 1.1.7. (basic properties of generators)
Let R be a commutative ring and let a, b ∈ R and let u be a unit in R. Then

(i) 〈a, ab〉 = 〈a〉.

(ii) 〈ua〉 = 〈a〉, in particular 〈−a〉 = 〈a〉.

(iii) 〈a, b, a+ b〉 = 〈a, b〉.

Proof. To prove (i) let I = 〈a, ab〉 and let J = 〈a〉. (I ⊂ J) Let c ∈ I ⇒ c = xa + yab for
some x, y ∈ R. Now xa+ yab = (x+ yb)a ∈ J. (J ⊂ I) Let c ∈ J ⇒ c = xa for some x ∈ R.
Now xa = xa+ 0ab⇒ c ∈ I. The proofs of (ii) and (iii) are left to the exercises.

1.1.1 Ideals in Z

Theorem 1.1.8. Every ideal in Z is of the form 〈a〉 for some non-negative integer a.

Proof. Let I be an ideal in Z. If I = {0} then I = 〈0〉 and the theorem is true. If I 6= {0}
then I has at least one non-zero element x. Since I is closed under subtraction then 0−x ∈ I
thus I must have at least one positive and one negative integer. Let b be the least positive
integer in I. We claim I = 〈b〉. Let a be any other element in I. We just need to show
a ∈ 〈b〉. Dividing a by b we obtain integers q and r satisfying

a = bq + r with 0 ≤ r < b.

We have r = a− bq. But a, b ∈ I ⇒ a− bq ∈ I ⇒ r ∈ I. If 0 < r < b then we have a smaller
positive element than b in I, a contradiction. Thus r = 0 and a = bq and thus a ∈ 〈b〉.
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Example 1.1.9. According to Theorem 1.1.8 the ideal 〈6, 4〉 = 〈b〉 for some positive integer
b. I is an ideal so 6 − 4 = 2 ∈ I since I is closed under subtraction. Let J = 〈2〉. We
claim I = J . To prove I ⊂ J let c ∈ I. Then c = 6x + 4y for some integers x, y. Clearly
2|6x + 4y so c ∈ 〈2〉. To prove J ⊂ I let c ∈ J so c = 2z for some integer z. Now
2z = 6z − 4z = 6z + 4(−z) ∈ I. Observe that 2 = gcd(6, 4).

Theorem 1.1.10. Let a, b ∈ Z be nonzero and let I = 〈a, b〉. Then I = 〈g〉 where g =
gcd(a, b).

Proof. (I ⊂ 〈g〉) Let f be in I. Then f = ax+by for some x, y ∈ Z. But g = gcd(a, b)⇒ g|a
and g|b which implies g|f ⇒ f ∈ 〈g〉.

(〈g〉 ⊂ I) Let h be in 〈g〉. Thus h = gq for some integer q. By the extended Euclidean
algorithm there exist integers s, t such that sa + tb = g. Thus h = gq = (sa + tb)q =
a(qs) + b(qt) ∈ I.

Theorem 1.1.10 generalizes so that 〈30,−20, 45〉 = 〈gcd(30,−20, 45)〉 = 〈5〉.

Corollary 1.1.11. Let a1, a2, . . . , an be n ≥ 2 non-zero integers.
Then I = 〈a1, a2, . . . , an〉 = 〈g〉 where g = gcd(a1, a2, . . . , an).

Proof. (by induction on n) Induction base (n = 2): see Theorem 1.1.10.
Induction step (n > 2): Let h = gcd(a1, . . . , an−1). Assume 〈a1, . . . , an−1〉 = 〈h〉. Now by
definition of 〈 〉, I = {

∑n
i=1 aibi} for some integers bi. We have

I = {
∑n

i=1 aibi : bi ∈ Z}
=

{
anbn +

∑n−1
i=1 aibi : bi ∈ Z

}
= {anbn + hb : bn, b ∈ Z} by induction on n.

= 〈an, h〉
= 〈gcd(h, an)〉 by Theorem 1.1.10.

Finally gcd(h, an) = gcd(gcd(a1, . . . , an−1), an) = gcd(a1, a2, . . . , an) = g.

We end with some examples of constructing new ideals from old ideals.

Lemma 1.1.12. Let I and J be two ideals in a commutative ring R. Let I + J = {a + b :
a ∈ I and b ∈ J} denote the sum of two ideals. Then I ∩ J and I + J are ideals in R.

The proof is left as an exercise. As an example consider I = 〈6〉 and J = 〈4〉 in Z. Now
I = {0,±6,±12,±18,±24, . . . } and J = {0,±4,±8,±12,±16,±20,±24, . . . }. We see that
I ∩ J = {0,±12,±24, . . . } = 〈12〉 = 〈lcm(6, 4)〉. Also I + J includes 6 + (−4) = 2 and the
elements of I + J are of the form 6x+ 4y which are all even hence I + J = 〈2〉 = 〈gcd(6, 4)〉.
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1.2 Maximal Ideals

Definition 1.2.1. An ideal I in a commutative ring R is said to be maximal if there is no
ideal J lying strictly between I and R, that is, I ⊂ J ⊂ R with I 6= J and J 6= R.

We have 〈6〉 ⊂ 〈3〉 ⊂ 〈1〉 = Z. Is there any ideal strictly between 〈3〉 and Z? The next
Lemma says 〈3〉 is maximal in Z.

Lemma 1.2.2. Let p be a prime in Z. Then 〈p〉 is is maximal.

Proof. Suppose J is an ideal in R and 〈p〉 ⊂ J ⊂ R. Suppose a ∈ J but a is not in 〈p〉. Then
since p is prime p does not divide a. Hence a = pq + r for some quotient q and remainder r
satisfying 0 < r < p. Now a− pq = r and a, p ∈ J imply r ∈ J . But gcd(r, p) = 1 since p is
prime. Thus there exist integers x, y such that xr+ yp = 1. Since r, p ∈ J this means 1 ∈ J
thus J = R and we have proven 〈p〉 is maximal.

A similar result holds for ideals in F [x] where F is a field. If f is an irreducible polynomial
over F then 〈f〉 is maximal in F [x]. We consider an example.

Example 1.2.3. Is 〈x2− 1〉 maximal in F [x]? In F [x] we have x2− 1 = (x− 1)(x+ 1). Let
J = 〈x − 1〉. Now 〈x2 − 1〉 ⊂ J ⊂ F [x] so 〈x2 − 1〉 is not maximal. Is 〈x2 + 1〉 maximal?
This time it depends on F . If F = Q then since x2 + 1 is irreducible over Q then 〈x2 + 1〉
is maximal. If F = C then since x2 + 1 = (x − i)(x + i) the ideal J = 〈x − i〉 satisfies
〈x2 + 1〉 ⊂ J ⊂ C[x] so 〈x2 + 1〉 is not maximal.

1.3 Ideals in Quotient Rings

Consider the finite ring R = Z2[x]/(x3 + 1) = {0, 1, x, x + 1, x2, x2 + 1, x2 + x, x2 + x + 1}.
What are the ideals in R? Let f = x3 + 1 = (x + 1)(x2 + x + 1). Observe that gcd(f, x) =
1, gcd(f, x+1) = x+1, gcd(f, x2) = 1, gcd(f, x2+1) = x+1, gcd(f, x2+x) = x+1, gcd(f, x2+
x+ 1) = x2 + x+ 1 thus the units in R are 1 and x and x2. Thus if I is an ideal containing
1 or x or x2 then I = R. We obtain the following non-trivial ideals in R.

〈x+ 1〉 = {0, x+ 1, x2 + 1, x2 + x}
〈x2 + x+ 1〉 = {0, x2 + x+ 1}

We recall that a quotient ring R is a vector space. It turns out that ideals in R are subspaces
of R. Let f be in F [x] have n = deg f > 0 and let R = F [x]/f . For s ∈ F and [a] ∈ R we
defined scalar multiplication s[a] = [sa] = [s][a] and saw that R is a vector space over F .

Theorem 1.3.1. Let I be an ideal in the quotient ring R = F [x]/f . Then I is a subspace
of R.

Proof. We have already shown that an ideal is closed under addition. Let s ∈ F . Now s ∈ R
since F is the constant subfield of R. Property (iii) means I is closed under multiplication
by elements of R. Hence I is closed under scalar multiplication. Finally, I is not empty since
0R ∈ I thus I is a subspace of R.
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Since an ideal I in a quotient ring R = F [x]/f is a subspace of R we would like to know
the dimension of I over F and it will be useful to know a basis for I. Continuing with the
previous example we have

ideal in Z2[x]/(x3 + 1) basis dimension
{0} { } 0

{0, x+ 1, x2 + 1, x2 + x} {x+ 1, x2 + 1} 2
{0, x2 + x+ 1} {x2 + x+ 1} 1

R {1, x, x2} 3

1.4 Ideals in Algebra

We end our introduction to ideals by showing where ideals arise in algebra. We first show
how ideals are connected with ring homomorphisms. We then take a first look at ideals in
polynomial rings with more than one variable and connect ideals with solving systems of
polynomial equations. In section 2.14 we will see that the BCH error correcting codes are
constructed from ideals in the quotient ring Zp[x]/(xn − 1).

Let R and S be two commutative rings and let φ : R→ S be a ring homomorphism. So
φ(a + b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b) for all a, b ∈ R and we are interested in the
case here φ is not bijective. We have the following basic properties.

Lemma 1.4.1. Let a, b be in R.

(i) φ(0R) = 0S,

(ii) φ(−a) = −φ(a) and

(ii) φ(a− b) = φ(a)− φ(b).

Proof. To prove (i) first note that φ(0) = φ(0 + 0) = φ(0) + φ(0). Now 0S = φ(0)− φ(0) =
(φ(0) + φ(0)) − φ(0) = φ(0) + (φ(0) − φ(0)) = φ(0). To prove (ii) we have φ(a) + φ(−a) =
φ(a + (−a)) = φ(0) = 0 so φ(−a) is the additive inverse of φ(a). To prove (iii) we have
φ(a− b) = φ(a+(−b)) = φ(a)+φ(−b) = φ(a)+(−φ(b)) by (ii) which equals φ(a)−φ(b).

Definition 1.4.2. Let R and S be two commutative rings with φ : R→ S a homomorphism.
Then the kernel of φ is

ker(φ) = {a ∈ R : φ(a) = 0S}

So the kernel is all elements of R that are mapped to 0S. As an example let φ : Z→ Zn

be given by φ(a) = a mod n. So ker(φ) is all integers divisible by n which is the ideal 〈n〉.
As a second example let F be a field and a ∈ F . Consider φ : F [x]→ F where φ(f) = f(a).
Here ker(φ) is all polynomials with root a, that is, all polynomials divisible by x− a hence
ker(φ) = 〈x− a〉.

Lemma 1.4.3. Let φ : R→ S be a homomorphism. Then ker(φ) is an ideal in S.
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Proof. Suppose a and b are in ker(φ) so that φ(a) = 0 and φ(b) = 0. Since φ is a homomor-
phism by Lemma 1.2.2 says φ(0R) = 0S hence 0R ∈ ker(φ). Now φ(a − b) = φ(a) − φ(b) =
0− 0 = 0 hence a− b ∈ ker(φ). Finally let r be in R. Then φ(rb) = φ(r)φ(b) = φ(r) · 0 = 0.
Thus rb is in ker(φ).

Consider the system of polynomial equations {x2− y2 = 1, xy = 1} and suppose we want
to find the solutions in R2 if any. Let f1 = x2 − y2 − 1 and f2 = xy − 1. Consider the ideal

I = 〈x2 − y2 − 1, xy − 1〉 in R[x, y].

Our goal is to find simpler generators for the ideal. First the polynomial

f3 = yf1 − xf2 = yx2 − y3 − y − (x2y − x2) = x− y3 − y

is in I because f1, f2 ∈ I. So we have I = 〈f1, f2, f3〉. Now consider the polynomial

f4 = f2 − yf3 = xy − 1− (xy − y4 − y2) = y4 + y2 − 1

which is also in I because f2, f3 ∈ I. We now have

I = 〈f1, f2, f3, f4〉.

It turns out that {f1, f2, f3, f4} is a special kind of basis for I called a Gröbner basis for I
and as such we can stop looking for more generators. But f4 = f2 − yf3 ⇒ f2 = f4 + yf3
so f2 is a redundant generator so I = 〈f1, f3, f4〉. With some extra work we can show that
f1 = (y2 + 1)f3 + (y3 + x+ y)f4 thus f1 ∈ 〈f3, f4〉 so that

I = 〈f3, f4〉 = 〈x− y3 − y, y4 + y2 − 1〉.

It turns out that the new basis {f3, f4} for I is still a Gröbner basis for I. And the two
systems of equations {f1 = 0, f2 = 0} and {f3 = 0, f4 = 0} have the same solutions
in R2, because changing the generators of an ideal does not change the solutions of the
corresponding system of equations. It is also clear now how to solve {f3 = 0, f4 = 0}. For
{x − y3 − y = 0, y4 + y2 − 1 = 0} has 4 solutions for y, two real and two complex, and for
each solution for y the equation x = y3 + y gives one solution for x.

Exercises

1. Which of the following are ideals

(a) Q in R
(b) {0, 2, 4, 6} in Z8

(c) Z in Z[i]

(d) {0, 1} in GF(4)
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(e) {0, x2 + 1} in R = Z2[x]/(x4 + 1)

2. Find a single generator for the following ideals.

(a) 〈12, 20〉 in Z
(b) 〈12, 21, 15〉 in Z
(c) 〈x2, x3〉 in Q[x]

(d) 〈x2 − 1, x3 − 1〉 in Q[x]

3. Let I and J be ideals in a commutative ring R.

(a) Prove that I ∩ J is an ideal in R.

(b) Show that I ∪ J is not an ideal in general.

(c) Prove that I + J is an ideal in R.

(d) For I = 〈x2 − 1〉 and J = 〈x2 − x〉 find generators for I ∩ J and I + J .

4. Consider the ideal I = {f ∈ Q[x] : f(i) = 0} where i2 = −1. Prove that I is an ideal
in Q[x] and find a generator g for I. Hint: what is the minimal polynomial for i in
Q[x]? Repeat this exercise with J = {f ∈ C[x] : f(i) = 0}.

5. Let F be a field. Prove that every ideal in F [x] is of the form 〈f〉 for some f ∈ F [x].
Hint: use the same argument in the proof of Theorem 1.1.10.

6. Let R = Z2/(x
2 + 1) and S = Z2/(x

2 + x+ 1). List all ideals in R and S.

7. (a) Show that 〈2〉 = 〈10〉 in Z14

(b) Show that 〈i〉 = Z[i] where i2 = −1

(c) Show that 〈a, b, a+ b〉 = 〈a, b〉 in a commutative ring R

(d) Show that 〈ua〉 = 〈a〉 if u is a unit in R

8. Let I = 〈f1, f2, ..., fs〉 and J = 〈g1, g2, ..., gt〉 be two ideals in a commutative ring R.
Prove that fi ∈ J for 1 ≤ i ≤ s and gi ∈ I for 1 ≤ i ≤ t implies I = J . Now use this
to prove that 〈x+ y − 1, x− y〉 = 〈x− y, 2y − 1〉.

9. Let F be a field and let f ∈ F [x] with deg f > 0. Show that
〈f〉 is maximal in F [x] ⇐⇒ f is irreducible over F .

10. Which of the following ideals are maximal in the given ring? If not maximal, give an
ideal J lying strictly between the given ideal and ring.

(a) 〈4〉 in Z
(b) 〈−3〉 in Z
(c) 〈x〉 in Q[x]

(d) 〈x3 + 1〉 in Q[x]
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