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ABSTRACT

Systems of polynomial equations over an algebraically-closed
field K can be used to concisely model many combinatorial
problems. In this way, a combinatorial problem is feasible
(e.g., a graph is 3-colorable, hamiltonian, etc.) if and only
if a related system of polynomial equations has a solution
over K. In this paper, we investigate an algorithm aimed
at proving combinatorial infeasibility based on the observed
low degree of Hilbert’s Nullstellensatz certificates for poly-
nomial systems arising in combinatorics and on large-scale
linear-algebra computations over K. We report on experi-
ments based on the problem of proving the non-3-colorability
of graphs. We successfully solved graph problem instances
having thousands of nodes and tens of thousands of edges.

Categories and Subject Descriptors

G.2.1 [Combinatorics|: Combinatorial algorithms

General Terms
Algorithms

1. INTRODUCTION

It is well known that systems of polynomial equations over
a field can yield small models of difficult combinatorial prob-
lems. For example, it was first noted by D. Bayer that the
3-colorability of graphs can be modeled via a system of poly-
nomial equations [2]. More generally, one can easily prove
the following:
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LEMMA 1.1. A graph G is k-colorable iff the system of
n +m equations in n variables ¥ —1 =0,Vi € V(G), and

Pl ekl = 0,v{i, 5} € B(G) has a complex solution.
Moreover, the number of solutions equals the number of dis-
tinct k-colorings multiplied by k!.

Although such polynomial system encodings have been used
to prove combinatorial results (see [1, 6] and therein), they
have not been widely used for computation. The key issue
that we investigate here is the use of such polynomial sys-
tems to effectively decide whether a graph, or other combina-
torial structure, has a property captured by the polynomial
system and its associated ideal. We call this the combina-
torial feasibility problem. We are particularly interested in
whether this can be accomplished in practice for large com-
binatorial structures such as graphs with many nodes.

Certainly, using standard tools in computational algebra
such as Grobner bases, one can answer the combinatorial
feasibility problem by simply solving the system of poly-
nomials. Nevertheless, it has been shown by experiments
that current Grobner bases implementations often cannot
directly solve polynomial systems with hundreds of poly-
nomials. This paper proposes another approach that relies
instead on the nice low degree of the Hilbert’s Nullstellen-
satz for combinatorial polynomial systems and on large-scale
linear-algebra computation.

For a hard combinatorial problem (e.g., 3-colorability of
graphs), we associate a system of polynomial equations J =
{fi(x) =0,..., fs(x) = 0} such that the system J has a so-
lution if and only if the combinatorial problem has a feasible
solution. The Hilbert Nullstellensatz (see e.g.,[5]) states that
the system of polynomial equations has no solution over an
algebraically-closed field K if and only if there exist poly-
nomials B1,...,08s € Klz1,...,2z,] such that 1 = Y 8;fi.
Thus, if the polynomial system J has no solution, then there
exists a certificate that J has no solution, and thus a certifi-
cate that the combinatorial problem is infeasible.

The key idea that we explore in this article is to use the
Nullstellensatz to generate a finite sequence of linear algebra
systems, of increasing size, which will eventually become
feasible if and only if the combinatorial problem is infeasible.
Given a system of polynomial equations, we fix a tentative
degree k for the coefficient polynomials (3; in the certificates.



We can decide whether there is a Nullstellensatz certificate
with coefficients of degree < k by solving a system of linear
equations over the field K whose variables are in bijection
with the coefficients of the monomials of the polynomials
Bi,...,0s. If this linear system has a solution, we have
found a certificate; otherwise, we try a higher degree for
the polynomials ;. This process is guaranteed to terminate
because, for a Nullstellensatz certificate to exist, the degrees
of the polynomials ; cannot be more than known bounds
(see [10] and references therein). We explain the details of
the algorithm, which we call NulLLA, in Section 2.

Our method can be seen as a general-field variation of
work by Lasserre [11], Laurent [13] and Parrilo [16] and
many others, who studied the problem of minimizing a gen-
eral polynomial function f(x) over a real algebraic vari-
ety with finitely many points. Laurent proved that when
the variety consists of the solutions of a zero-dimensional
radical ideal I, one can set up the optimization problem
min{f(z) : € variety(I)} as a finite sequence of semidef-
inite programs terminating with the optimal solution (see
[13]). There are two key observations that speed up practi-
cal calculations considerably: (1) when dealing with feasibil-
ity, instead of optimization, linear algebra replaces semidef-
inite programming and (2) there are ways of controlling the
length of the sequence of linear-algebra systems including fi-
nite field computation instead of calculations over the reals
and the reduction of matrix size by symmetries. See Section
3 for details.

Our algorithm has good practical performance and nu-
merical stability. Although known theoretical bounds for de-
grees of the Nullstellensatz coefficients are doubly-exponential
in the size of the polynomial system (and indeed there exist
examples that attain such a large bound and make NulLA
useless in general), our experiments demonstrate that of-
ten low degrees suffice for systems of polynomials coming
from graphs. We have implemented an exact-arithmetic lin-
ear system solver optimized for these Nullstellensatz-based
systems. We performed many experiments using NulLLA, fo-
cusing on the problem of deciding graph 3-colorability (note
that the method is applicable to any combinatorial problem
whose polynomial system encoding is known). We conclude
with a report on these experiments in Section 4.

2. NULLSTELLENSATZ LINEAR

ALGEBRA (NULLA) ALGORITHM

Recall that Hilbert’s Nullstellensatz states that a system
of polynomial equations fi(z) 0,...,fs(x) = 0, where
fi € K[z1,...,2,] and K is an algebraically closed field,
has no solution in K" if and only if there exist polynomials
Biy...,Bs € Klz1,...,2n] such that 1 = > 8;f; [5]. The
polynomial identity 1 = Y 3, f; is called a Nullstellensatz
certificate, which has degree d if max{deg(8;)} = d.

The Nullstellensatz Linear Algebra (NulLA) algorithm ac-
cepts as input a system of polynomial equations and outputs
either a yes answer, if the system of polynomial equations
has a solution, or a no answer, along with a Nullstellensatz
infeasibility certificate, if the system has no solution. Before
stating the algorithm in pseudocode, we clarify the connec-
tion to linear algebra. Suppose the input polynomial system
is infeasible over K, and suppose further that an oracle has
told us the certificate has degree d but that we do not know
the actual coefficients of the degree d polynomials ;. Thus,
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we have the polynomial identity 1 = > 8;f;. If we expand
the identity into monomials, the coefficients of a monomial
are linear expressions in the coefficients of the ;. Since
two polynomials over a field are identical precisely when the
coefficients of corresponding monomials are identical, from
the 1 = " B fi, we get a system of linear equations whose
variables are the coefficients of the ;. Here is an example:

ExXAMPLE 2.1. Consider the polynomial system x3 — 1 =
0,21 +x2 =0,21 +x3 = 0,22 + x3 = 0. This system has no
solution, and a Nullstellensatz certificate of degree one.

1= (cox1 + cr2 + coxs + ¢3) (zF — 1)
——

B1 f1
+ (caz1 + csx2 + cex3 + c7) (x1 + 2)
—_———
B2 f2

+ (csz1 + coma + crox3 + c11) (21 + x3)
———

B3 f3
+ (c1221 + c13w2 + c1axs + c15) (w2 + x3) .
———
Ba fa

Ezxpanding the tentative Nullstellensatz certificate into mono-
mials and grouping like terms, we arrive at the following
polynomial equation:

1= cox? + clx%:pg + C2CE%$3 +(c3+ca+ 08):1:% —c3
+ (c10 + c14)x3 + (ca + ¢5 + o + c12)z122 + (c5 + C13)73
+ (c6 + g + c10 + c12)z123 + (c6 + €9 + c13 + c14)T2T3
+ (e7 +c15 — c1)x2 + (c11 + c15 — c2)x3 + (c7 4+ c11 — co)T1-

From this, we extract a system of linear equations. Since
a Nullstellensatz certificate is identically one, all monomials
except the constant term must be equal to zero; namely:

co =0, ci1+ci5 —ca =0, —c3 = 1.

By solving the system of linear equations, we reconstruct the
Nullstellensatz certificate from the solution. Indeed

1 1 1
1= 53:1(:1:1 + z3) — 51:1(:1:2 + z3) + 5:{:1(1‘1 +x3) — (.Z‘% -1)

In general, one does not know the degree of the Nullstel-
lensatz certificate in advance. What one can do is to start
with a tentative degree, say start at degree one, produce the
corresponding linear system, and solve it. If the system has
a solution, then we have found a Nullstellensatz certificate
demonstrating that the original input polynomials do not
have a common root. Otherwise, we increment the degree
until we can be sure that there will not be a Nullstellen-
satz certificate at all, and thus we can conclude the system
of polynomials has a solution. The number of iterations of
the above steps determines the running time of NulLA. For
this, there are well-known upper bounds on the degree of the
Nullstellensatz certificate [10]. These upper bounds for the
degrees of the coefficients §; in the Hilbert Nullstellensatz
certificates for general systems of polynomials are doubly-
exponential in the number of input polynomials and their de-
gree. Unfortunately, these bounds are known to be sharp for
some specially-constructed systems. Although this immedi-
ately says that NulLLA is not practical for arbitrary polyno-
mial systems, we have observed in practice that polynomial
systems for combinatorial questions are extremely special-
ized, and the degree growth is often wvery slow — enough
to deal with large graphs or other combinatorial structures.
Now we describe NulLA in pseudocode:



stk sk ook ok ok ok R ok K sk ok ok ok sk ok K sk sk ok sk sk ok K sk ok ok Rk o
ALGORITHM: Nullstellensatz Linear Algebra (NulLA)
Algorithm)
INPUT: A system of polynomial equations
F={fi(z)=0,..., fs(z) = 0}
OUTPUT: vYES, if F' has solution, else NO along with a
Nullstellensatz certificate of infeasibility.
d <« 1.
K <« known upper bounds on degree of Nullstellensatz
for F (see e.g., [10])
while d < K do
CERT < >_7_, B fi (where §; are polynomials of
degree d, with unknowns for their coefficients).
Extract a system of linear equations from CERT with
columns corresponding to unknowns,
and rows corresponding to monomials.
Solve the linear system.
if the linear system is consistent then
CERT «— Y_7_ i f; (with unknowns in £;
replaced with linear system solution values.)
print “The system of equations F' is infeasible.”
return NO with CERT.
end if
d<«—d+ 1.
end while
print “The system of equations F' is feasible.”

return YES.
sk ok ok sk sk ok ok ok ok o K ok sk ok ok ok ok o K K sk ok ok ok o K K sk ok ok ok ok K ok sk sk ok ok ok o K K sk ok ok ok ok K

This opens several theoretical questions. It is natural to
ask about lower bounds on the degree of the Nullstellensatz
certificates. Little is known, but recently it was shown in
[6], that for the problem of deciding whether a given graph
G has an independent set of a given size, a minimum-degree
Nullstellensatz certificate for the non-existence of an inde-
pendent set of size greater than «(G) (the size of the largest
independent set in G) has degree equal to o(G), and it is
very dense; specifically, it contains at least one term per in-
dependent set in G. For polynomial systems coming from
logic there has also been an effort to show degree growth
in related polynomial systems (see [3, 8] and the references
therein). Another question is to provide tighter, more real-
istic upper bounds for concrete systems of polynomials. It is
a challenge to settle it for any concrete family of polynomial
systems.

3. FOURMATHEMATICAL IDEAS TO OP-
TIMIZE NULLA

Since we are interested in practical computational prob-
lems, it makes sense to explore refinements and variations
that make NulLA robust and much faster for concrete chal-
lenges. The main computational component of NulLA is to
construct and solve linear systems for finding Nullstellensatz
certificates of increasing degree. These linear systems are
typically very large for reasonably-sized problems, even for
certificate degrees as low as four, which can produce linear
systems with millions of variables (see Section 4). Further-
more, the size of the linear system increases dramatically
with the degree of the certificate. In particular, the number
of variables in the linear system to find a Nullstellensatz cer-
tificate of degree d is precisely s("1?) where n is the number
of variables in the polynomial system and s is the number
of polynomials. Note that (";d) is the number of possible
monomials of degree d or less. Also, the number of non-zero
entries in the constraint matrix is precisely M(";”i) where
M is the sum over the number of monomials in each poly-
nomial of the system.
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For this reason, in this section, we explore mathemati-
cal approaches for solving the linear system more efficiently
and robustly, for decreasing the size of the linear system for
a given degree, and for decreasing the degree of the Null-
stellensatz certificate for infeasible polynomial systems thus
significantly reducing the size of the largest linear system
that we need to solve to prove infeasibility. Note that these
approaches to reduce the degree do not necessarily decrease
the available upper bound on the degree of the Nullstellen-
satz certificate required for proving feasibility.

It is certainly possible to significantly decrease the size
of the linear system by preprocessing the given polynomial
system to remove redundant polynomial equations and also
by preprocessing the linear system itself to eliminate many
variables. For example, in the case of 3-coloring problems
for connected graphs, since (z + 1) = (2} + 1) + (z: +
x;)(2F +xix + x?), we can remove all but one of the vertex
polynomials by tracing paths through the graph. However,
preprocessing alone is not sufficient to enable us to solve
some large polynomial systems.

The mathematical ideas we explain in the rest of this sec-
tion can be applied to arbitrary polynomial systems, but to
implement them, one has to look for the right structures in
the polynomials.

3.1 NulLA over Finite Fields

The first idea is that, for combinatorial problems, one can
often carry out calculations over finite fields instead of re-
lying on unstable floating-point calculations. We illustrate
this with the problem of deciding whether the vertices of a
graph permit a proper 3-coloring. The following encoding
(a variation of [2] over the complex numbers) allows us to
compute over Fa, which is robust and much faster in practice
(also see [7]):

LEMMA 3.1. The graph G is 3-colorable if and only if the
zero-dimensional system of equations x3 +1 = 0,Vi € V(G),
and 7 + zix; + x5 = 0,Y{i, j} € E(G), has a solution over
Fa, the algebraic closure of Fo.

Before we prove Lemma 3.1, we introduce a convenient
notation: Let a be an algebraic element over TF5 such that
a? +a+1 = 0. Thus, although z7 4+ 1 has only one root
over Fy, since &3 + 1 = (x; + 1)(2? + x; + 1), the polynomial

z? + 1 has three roots over Fy, which are 1, and o + 1.

Proor. If the graph G is 3-colorable, simply map the
three colors to 1, @« and a+1. Clearly, the vertex polynomial
equations z? + 1 = 0 are satisfied. Furthermore, given an
edge {3, 7}, x:+x; # 0 since variable assignments correspond
to a proper 3-coloring and adjacent vertices are assigned
different roots. This implies that @} + z? = (z; + 2;) (2 +
T + x?) =1+1=0. Therefore, 27 + z;x; + x? =0 and
the edge polynomial equations are satisfied.

Conversely, suppose that there exists a solution to the
system of polynomial equations. Clearly, every vertex is
assigned either 1, or oo + 1. We will show that adjacent
vertices are assigned different values. Our proof is by contra-
diction: Assume that two adjacent vertices i, j are assigned
the same value 8. Then, 0 = z? +z;z; +x? =[24+5245% =
332 # 0. Therefore, adjacent vertices are assigned different
roots, and a solution to the system corresponds directly to
a proper 3-coloring. [



We remark that this result can be extended to k-colorabil-
ity and F,, when g is relatively prime to k. The following
computational lemma will allow us to certify graph non-3-
colorability very rapidly over Fs instead of working over its
algebraic closure.

LEMMA 3.2. Let K be a field and K its algebraic closure.
Given f1, f2,..., fs € K[z1,...,z,], there exists a Nullstel-
lensatz certificate 1 = 3 B; fi where 3; € K[ml, .oy Tn] if and
only if there exists a Nullstellensatz certificate 1 = > (i fi
where 3; € Klx1,...,Tx].

PROOF. If there exists a Nullstellensatz certificate 1 =
3 Bifi where B; € K[z1,...,xy], via NulLA, construct the
associated linear system and solve. Since f; € K[z1,...,Zx],
the coefficients in the linear system will consist only of values
in K. Thus, solving the linear system relies only on computa-
tions in K, and if the free variables are chosen from K instead
of K, the resulting Nullstellensatz certificate 1 = > 3. f; has
Bi € K[z1,...,zn]. The reverse implication is trivial. [J

Therefore, we have the following corollary:

COROLLARY 3.3. A graph G is non-3-colorable if and only
if there exists a Nullstellensatz certificate 1 =3 B; fi where
Bi € Fa[z1, ..., xs] where the polynomials f; € Fa[z1,. .., Tx]
are as defined in Lemma 3.1.

This corollary enables us to compute over Fa, which is
extremely fast in practice (see Section 4).

Finally, the degree of Nullstellensatz certificates necessary
to prove infeasibility can be lower over 2 than over the ra-
tionals. For example, over the rationals, every odd-wheel
has a minimum non-3-colorability certificate of degree four
[6]. However, over Fa, every odd-wheel has a Nullstellensatz
certificate of degree one. Therefore, not only are the mathe-
matical computations more efficient over F2 as compared to
the rationals, but the algebraic properties of the certificates
themselves are sometimes more favorable for computation
as well.

3.2 NulLA with symmetries

Let us assume that the input polynomial system F =
{f1,..., fs} has maximum degree g and that n is the number
of variables present. As we observed in Section 2, for a
given fixed positive integer d serving as a tentative degree for
the Nullstellensatz certificate, the Nullstellensatz coefficients
come from the solution of a system of linear equations. We
now take a closer look at the matrix equation Mr 4y = brq
defining the system of linear equations. First of all, the
matrix Mp,q has one row per monomial x® of degree less
than or equal to ¢+ d on the n variables and one column per
polynomial of the form z° f;, i.e., the product of a monomial
2% of degree less than or equal to d and a polynomial f; €
F. Thus, Mpaq = (Mya zs,) where M o ,5;, equals the
coefficient of the monomial z* in the polynomial z° f;. The
variable y has one entry for every polynomial of the form
2% f; denoted Yys,, and the vector br g has one entry for
every monomial % of degree less than or equal to q + d
where (bp,q)ze = 0if & # 0 and (bp,a)1 = 1.

ExAMPLE 3.4. Consider the complete graph K4. The shape

of a degree-one Hilbert Nullstellensatz certificate over Fa for
non-3-colorability is as follows:

1=co(zf +1)
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1 2 3 4
+ (c12x1 + cioma + cjox3 + cioza) (2] + 122 + 5

2
1 2 3 4 2
+ (c1321 + cizw2 + €323 + cizza)(x] + T123 + T

(

(
+ (claz1 + cyzo + Syas + ctyza) (@3 + 2124 + 2
(
(

3
4
z% + z2x3 + 3
4

1 2 3 4 2
+ (3421 + 342 + Chyx3 + coywa) (x5 + T2xs + T

3)
5)
7)
3
1)
7)

)
)
)
+ (cham1 + ch3m2 + 33wz + ch3wa)
)
)

1 2 : 4 2
+ (31 + c3am2 + 3423 + c3424) (23 + T324 + 23

Note that we have preprocessed the certificate by removing
the redundant polynomials x3 + 1 where i # 1 and removing
some variables that we know a priori can be set to zero, which
results in a matriz with less columns. As we explained in
Section 2, this certificate gives a linear system of equations
in the variables co and cfj (note that k is a superscript and
not an exponent). This linear system can be captured as the
matriz equation Mri1c = br,1 where the matric M1 is as
follows.

o
(=]
o

SSESESISESESESESEN R RSES RS ISR SIS | o
)

LI IO IR O D YIRY
)

LOITITITORIDIIIOROIO RO D IIEH
Q

SRR ITTIIITOOIRD OO~ QLY
)

SRR ITDITITIITOR OO O~ DD YR
Q

IR ITIIDITIIDIROOIDIOR O InH
Q

ST ITIDIIIDTOTIDOD O O S ey
Q

PR AREHRHIOITITTITIIIIDTITIOD O O S gy
Q

HMEHEH OISO O O S IEH

1
a

2
T1T2

2
13

2
1,4
2
1Ty
L1T2X3
L1T2T4
$1$§
L1324
1’11’3
w3

2
ToI3

2
T4
2
23
Lo 34
1'21'421
@}

2
T3T4
2
3Ty
i

e T T e e e

SPITITIIITIIOIIOOOR DO~ =~
LOITIITIDTIIII ORI O~ DD~ QL
SSESESIESESESESESESES TSRS RIS IS ISR | oy

Certainly the matrix Mp,q is rather large already for small
systems of polynomials. The main point of this section is to
demonstrate how to reduce the size of the matrix by using
a group action on the variables, e.g., using symmetries or
automorphisms in a graph. Suppose we have a finite permu-
tation group G acting on the variables z1,...,x,. Clearly
G induces an action on the set of monomials with vari-
ables x1,x2,...,z, of degree t. We will assume that the
set F' of polynomials is invariant under the action of G, i.e.,
g(fi) € F for each f; € F. Denote by z°, the monomial
xflxgz .. .1:2", a monomial of degree 61 + 62 + -+ - + dp. De-
note by Orb(z®), Orb(z? f;) the orbit under G of monomial
% and, respectively, the orbit of the polynomial obtained as
the product of the monomial ° and the polynomial f; € F.

We now introduce a new matrix equation Mpqc ¥
Z_)F,(LG. The rows of the matrix MF,(LG are indexed by the
orbits of monomials Orb(z®) where £ is a monomial of de-
gree less than or equal to g + d, and the columns of Mz 4.6
are indexed by the orbits of polynomials Orb(z° f;) where
fi € F and the degree of the monomial z° less than or equal
to d. Then, let Mr 4,c = (MOTb(zO‘),Orb(zéfi)) where

>

7 f;€07rb(z0 f;)

Morb(ae),0rb(as 1) = Mz oy,



Note that M o zs7 = Myzay 6oy, for all g € G meaning
that the coefficient of the monomial z® in the polynomial
x° f; is the same as the coefficient of the monomial g(z®) in

the polynomial g(z° f;). So, Yz € Orb(z®),

2 2

x7 f; €07rb(xd f;) x7 f; €0rb(d f;)

Mo g, = Mya s,

and thus, Mo,y(z0)0rb(05,) 18 well-defined. We call the
matrix M r.d,c the orbit matriz. The variable y has one en-
try for every polynomial orbit Orb(z° ;) denoted Yorb(zs £;)-
The vector br.q has one entry for every monomial orbit
O’I“b(.CL;o‘)7 and let (bF,d)Orb(xa) = (bF,d)za =0 lf o ;é 0
and (br,a)orb1) = (br,a)1 = 1. The main result in this sec-
tion is that, under some assumptions, the system of linear
equations Mp 4% = brac has a solution if and only if
the larger system of linear equations Mrqy = bp,q has a
solution.

THEOREM 3.5. Let F = {f1,...,fs} C K[z1,...,xx], be
a polynomial system with K an algebraically-closed field, and
a finite group of permutations G C S,. Let Mp,q, MFyd’G de-
note the matrices defined above. Suppose that the polynomial
system F is closed under the action of the group G permut-
ing the indices of variables x1,...,xn. Suppose further that
the order of the group |G| and the characteristic of the field
K are relatively prime. The degree d Nullstellensatz linear
system of equations Mp,qy = br,a has a solution over K if
and only if the system of linear equations MF,d,G g = EF,d,G
has a solution over K.

Proor. To simplify notation, let M = Mpq, b = bp,q,
M = Mpgc and b = brac. First, we show that if the
linear system My = b has a solution, then there exists a
symmetric solution y of the linear system My = b meaning
that y,s;, is the same for all 2% f; in the same orbit, i.e.,

Yo f; = Ygop, for all 27 f; € Orb(x? f;). The converse is also
trivially true.

Since the rows and columns of the matrix M are labeled
by monomials z and polynomials z° f; respectively, we can
think of the group G as acting on the matrix M, permuting
the entries M, i.e., applying g € G to M gives the permuted
matrix g(M) where

Moo 4.

g(M)9<w°‘)vg(r5fi) =

Moreover, since Mya o7, = Mypo) g ;) for all g € G, we
must have g(M) = M, so the matrix M is invariant under
the action of the group G. Also, since the entries of the
variable y are labeled by polynomials of the form z*f;, we
can also think of the group G as acting on the vector y,
permuting the entries of the vector y, i.e., applying g € G to
y gives the permuted vector g(y) where g(y) g6 5,) = Yus s, -
Similarly, G acts on the vector b, and in particular, g(b) = b.
Next, we show that if My = b, then Mg(y) =bforallg € G
accordingly:

My=b = g(My) =g(b) = g(M)g(y) =b = Mg(y) =b,
for all g € G. Now, let

> 9.

yo L
@l 2,

Note we need that |G| is relatively prime to the characteristic
of the field K so that |G| is invertible. Then,

, 1 1
My == > Mgly)== ) b=,
a1 2 9w = 17 2

geaG
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so vy’ is a solution. Also, y;(;fi = ﬁzgec Yg(ad f;)s SO
Yos s, = Youg, for all 27 f; € Orb(2° f;). Therefore, y' is
a symmetric solution as required.

Now, assume that there exists a solution of My = b. By
the above argument, we can assume that the solution is sym-
metric, i.e., Y5, = Yary; where g(x° f;) = x7 f; for some
g € G. From this symmetric solution of My = b, we can
find a solution of M7 = b by setting

Yorb(adf;) = Yoo g

To show this, we check that (Mg)Orb(za) = Eorb@a) for
every monomial x®.

all Orb(zd f;)

b >

all Orb(zd f;) 7 f; €Oorb(zd ;)

> >

all Orb(zd f;) 7 f; cOorb(zdf;)

Z Mo yo5, Ypsy, = (My)ge.
all 20 f;

(MG)orb(ze) = Mo p(zay,0rb(2 £3) Jorb(s £:)

Mze av g | Yorbas fy)

Mx"‘,x’yfj Y £

7ThU.S, (M:’j)OTb(xo‘) = bOrb(acD‘) since (My)cc"‘ by
bO'rb(zo‘)-

Next, we establish the converse more easily. Recall that
the columns of M are labeled by orbits. If there is a solution

for M§ = b, then to recover a solution of My = b, we set

Yas £, = Yorb(ad f;)-
Note that y is a symmetric solution. Using the same calcu-

lation as above, we have that (My)ze = (My)orp(zo), and
thus, My =0b. U

EXAMPLE 3.6 (CONTINUATION OF EXAMPLE 3.4). Now
consider the action of the symmetry group G generated by
the cycle (2,3,4) (a cyclic group of order three). The per-
mutation of variables permutes the monomials and yields a
matric Mr1,c. We have now grouped together monomials
and terms within orbit blocks in the matriz below. The blocks
will be later replaced by a single entry, shrinking the size of
the matrix.

| ”CO|C%2 C%B C%4|052 Cfs C%4|C‘f2 0%3 Cf4|‘ = |C§4 034 C%3|
Hzfo o o{o 0o 0|0 0 0Of--10 0 0

x‘f 11 1 1|10 0 0|0 0 O 0 0 0
z2xoll0 1 0 0|1 0 olo o 1]--]o o0 o
x%xg olo 1 0|lo 1 0|1 0 0|--|0 0 0
riz4l|0| 0 0 110 0 1|0 1 0--|0 0 0
22|01 0 o1 o olo o ol--]o o o
xlx% olo 1 0|0 1 0|0 0 0|--|0 0 0
oclx% oo 0o 110 0 1|0 0 0|--|0 0 0
rixoxz3||Ol 0O 0 0|0 0O 0|1 0 Of--10 0 0
xixoxyl||Ol O O 0|0 0O 0|0 0 1|--10 0 0
xi1x324||0 O O 0|0 O 0|0 1 O--{0 0 O
z3lolo o ol1 o olo o ol--]o o o

xg oo 0 o0 1 0({0 0 O0|--{0 0 0

x% oo 0 o0 0 1{0 0 O0|--{0 0 0
z2z3[ol o 0 olo o o1 o ol--lo 1 0
zzxa|01 O 0 0|0 0 0|0 1 O)--|0 0 1
ngz oo 0o o{0o o0 o0o(0 0 1|--{1 0 0
x%z4 oo 0 0o{0 0 0(0 0 O0|--{0 0 1
zoz2||0l0 0 0l0 0 o0olo 0 o0f--|1 0 0
ng% oo 0o o|{o0o o0 0o(0 0 O0|--{0 1 0
xoxsxzyl||Ol O O 0|0 0 0|0 0 Of--|1 1 1




The action of the symmetry group generated by the cycle
(2,3,4) yields an orbit matrix Mrq,c of about a third the
size of the original one:

Orb(1)
Orb(z3)
Orb(z3z2)
Orb(z,23)

Orb(x3)
Orb(z3x3)
Orb(méaz;)

Orb(roxszs)

co
1
1
0
0
Orb(zi1z223)|| 0
0
0
0
0

Orb(D|[Z] 0] 00000 0]0
Orb@d)|[1[ 1] 00| 0]0]0]|0]|0
O’I‘b(mfa:z) ol1(1|1|1|10(0|0]|0
O’I‘b(a:la:é) ol1{1(0lo|l0jo|0]|0
Orb(zizozs)[|0| 0| 01| 1|1]0]0]0
Orb(@)|[0[ 01| 0|00 1|1]0
Orb(z2z3)|[0| 0] 01| 0| 0| 1|1]1
Orb(z2z2)|[0| 0] 00| 1|0 1|1]1
Orb(zoxzsza)l|[0| O]l 0000 0]|0] 1

If |G| is not relatively prime to the characteristic of the
field K, then it is still true that, if My = b has a solution,
then My = b has a solution. Thus, even if |G| is not rela-
tively prime to the characteristic of the field K, we can still
prove that the polynomial system F' is infeasible by finding
a solution of the linear system My = b.

3.3 Reducing the Nullstellensatz degree by ap-
pending polynomial equations

We have discovered that by appending certain valid but
redundant polynomial equations to the system of polyno-
mial equations described in Lemma 3.1, we have been able
to decrease the degree of the Nullstellensatz certificate nec-
essary to prove infeasibility. A valid but redundant poly-
nomial equation is any polynomial equation g(z) = 0 that
is true for all the zeros of the polynomial system fi(z) =
0,.... fs(x) =0, ie., g € VI, the radical ideal of I, where
I is the ideal generated by fi,..., fs. In fact, we only really
require that g(x) = 0 holds for at least one of zeros of the
polynomial system fi(z) = 0,..., fs(x) = 0 if a zero exists.
We refer to a redundant polynomial equation appended to
a system of polynomial equations, with the goal of reducing
the degree of a Nullstellensatz certificate, as a degree-cutter.

For example, for 3-coloring, consider a triangle described
by the vertices {z,y,z}. Whenever a triangle appears as a
subgraph in a graph, the vertices of the triangle must be
colored differently. We capture that additional requirement
with the equation

2y’ 22 =0, (1)

which is satisfied if and only if z # y # z # x since =z,
y and z are third roots of unity. Note that the equation
r+y+ 2z = 0 also implies © # y # z # x, but we use
the equation z? + y® + 22 = 0, which is homogeneous of
degree two, because the edge equations from Lemma 3.1 are
also homogeneous of degree two, and this helps preserve the
balance of monomials in the final certificate.

Consider the Koester graph [9] from Figure 1, a graph with
40 vertices and 80 edges. This graph has chromatic number
four, and a corresponding non-3-colorability certificate of
degree four. The size (after preprocessing) of the associated
linear system required by NulLLA to produce this certificate
was 8,724,468 x 10,995,831 and required 5 hours and 17
minutes of computation time.

Figure 1: Koester graph

When we inspect the Koester graph in Figure 1, we can
see that this graph contains 25 triangles. When we append
these additional 25 equations to the system of polynomial
equations describing this graph, the degree of the Nullstel-
lensatz certificate drops from four to one, and now, with
the addition of the 25 triangle equations, NulLA only needs
to solve a 4,626 X 4,346 linear system to produce a degree
one certificate, which takes 0.2 seconds of computation time.
Note that even though we have appended equations to the
system of polynomial equations, because the degree of the
overall certificate is reduced, the size of the resulting linear
system is still much, much less.

These degree-cutter equations for 3-colorability (1) can be
extended to k-colorability. A (k — 1)-clique implies that all
nodes in the clique have a different color. Then, given the
(k—1)-clique with the vertices 1 through zx_1, the equation
A A :E',zj = 0 is valid. We conjecture that
these equations may also decrease the minimal degree of the
Nullstellensatz certificate if one exists.

The degree-cutter equations for 3-colorability (1) are not
always sufficient to reduce the degree of the Nullstellensatz.
Consider the graph from Figure 2. Using only the poly-
nomials from Lemma 3.1, the graph in Figure 2 has a de-
gree four certificate. The graph contains three triangles:
{1,2,6},{2,5,6} and {2,6,7}. In this case, after appending
the degree-cutter equations for 3-colorability (1) the degree
of the minimal Nullstellensatz certificate for this graph is
still four.

Figure 2: A graph with a degree four certificate.

The difficulty with the degree-cutter approach is in finding
candidate degree-cutters and in determining how many of
the candidate degree-cutters to append to the system. There
is an obvious trade-off here between the time spent finding



degree-cutters together with the time penalty incurred re-
lated to the increased size of the linear system that must
be solved versus the benefit of reducing the degree of the
Nullstellensatz certificate.

3.4 Alternative Nullstellensitze

There is another approach we have found to decrease the
minimal degree of the Nullstellensatz certificate. We now
introduce the idea of an alternative Nullstellensatz, which
follows from the Hilbert Nullstellensatz.

COROLLARY 3.7 (ALTERNATIVE NULLSTELLENSATZ). A
system of polynomial equations f1(z) = 0,..., fs(z) = 0
where f; € Kz1,...,2,] and K is an algebraically closed
field has no solution in K™ if and only if there exist polyno-
mials B1,...,0s € Klz1,...,zn] and g € K[z, ..., 5] such
that g = > Bifi and the system fi(xz) = 0,..., fs(x) =0
and g(z) = 0 has no solution.

The Hilbert Nullstellensatz is a special case of this alterna-
tive Nullstellensatz where g(z) = 1. We can easily adapt
the NulLA algorithm to use this alternative Nullstellensatz
given the polynomial g. Here, the polynomial g determines
the constant terms of the linear system that we need to solve
to find a certificate of infeasibility. The idea here is that the
minimal degree of the alternative Nullstellensatz certificate
is sometimes smaller than the minimal degree of the ordi-
nary Nullstellensatz certificate.

In the case of 3-colorability (and also more generally k-
colorability), we may choose g as any non-trivial monomial
since g(z) = 0 implies that x; = 0 for some ¢ = 1, ..., n, which
contradicts that 2 — 1 = 0. For the graph in Figure 2, if
we choose ¢g(z) = z125T9 (among others), then the minimal
degree of the Nullstellensatz certificate drops to one.

The apparent difficulty in using the alternative Nullstel-
lensatz approach is in choosing g(z). One solution to this
problem is to try and find a Nullstellensatz certificate for a
set of g(x) including g(z) = 1. For example, for the graph
in Figure 2, we tried to find a certificate of degree one for
the set of all possible monomials of degree 3. Since choos-
ing different g(x) only means changing the constant terms
of the linear system in NulL A (the other coefficients remain
the same), solving for a set of g(x) can be accomplished very
efficiently.

4. EXPERIMENTAL RESULTS

In this section, we present our experimental results, in-
cluding a comparison between NulLLA and other graph color-
ing algorithms such as the Alon-Tarsi method [1], the Grob-
ner basis method, DSATUR and Branch-and-Cut [12]. To
summarize, almost all of the graphs tested by NulLLA had de-
gree one certificates. This algebraic property, coupled with
our ability to compute over Fa, allowed us to prove the non-
3-colorability of graphs with over a thousand nodes.

4.1 Methods

Our computations were performed on machines with dual
Opteron nodes, 2 GHz clock speed, and 12 GB of RAM. No
degree-cutter equations or alternative Nullstellensatz cer-
tificates were used. We preprocessed the linear systems
by removing redundant vertex polynomials via (z3 + 1) =
(z3 + 1) + (z; + ;) (27 + ziz; + 23). Since the graphs that
we tested are connected, via the previous equality, we can
remove all but one of the vertex polynomial equations by
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tracing paths from an arbitrarily selected “origin” vertex.
We also eliminated unnecessary monomials from the system.

4.2 Test cases
We tested the following graphs:

1. DIMACS: The graphs from the DIMACS Computa-
tional Challenge (1993, 2002) are described in detail
at http://mat.gsia.cmu.edu/COLORINGO2/. This set
of graphs is the standard benchmark for graph col-
oring algorithms. We tested every DIMACS graph
whose associated NulLLA matrix could be instantiated
within 12 GB of RAM. For example, we did not test
C4000.5.clqg, which has 4,000 vertices and 4,000,268
edges, yielding a degree one NulLA matrix of 758 mil-
lion non-zero entries and 1 trillion columns.

2. Mycielski: The Mycielski graphs are known for the
gap between their clique and chromatic number. The
Myecielski graph of order k is a triangle-free graph with
chromatic number k. The first few instances and the
algorithm for their construction can be seen at http:
//mathworld.wolfram.com/MycielskiGraph.html.

Kneser: The nodes of the Kneser-(¢,r) graph are rep-
resented by the r-subsets of {1,...,t}. Two nodes are
adjacent iff their subsets are disjoint.

Random: We tested random graphs in 16 nodes with
an edge probability of .27. This probability was exper-
imentally selected based on the boundary between 3-
colorable and non-3-colorable graphs and is explained
in detail in Section 4.3.

4.3 Results

In this section, we present our experimental results on
graphs with and without 4-cliques. We also point out certain
properties of NulLLA-constructed certificates, and conclude
with tests on random graphs. Surprisingly, all but four of the
DIMACS, Mycielski and Kneser graphs tested with NulLLA
have degree one certificates.

The DIMACS graphs are primarily benchmarks for graph
k-colorability, and thus contain many graphs with large chro-
matic number. Such graphs often contain 4-cliques. Al-
though testing for graph 3-colorability is well-known to be
NP-Complete, there exist many efficient (and even trivial),
polynomial-time algorithms for finding 4-cliques in a graph.
Thus, we break our computational investigations into two
tables: Table 1 contains graphs without 4-cliques, and Ta-
ble 3 contains graphs with 4-cliques (considered “easy” in-
stances of 3-colorability). In the tables below, the certifi-
cate degree is one, n is the number of vertices and m is
the number of edges. For space considerations, we only dis-
play representative results for graphs of varying size for each
family. The size of the linear systems involved rangef from
15,737 x 15,681 up to 45,980,650 x 46,378,333 (for the
(8,3)-Kneser and (13, 5)-Kneser graphs, respectively).

However, not all of the DIMACS challenge graphs had
degree one certificates. We were not able to produce certifi-
cates for mug88_1, mug88_25, mugl00_1 or mugl00_25, even
when using degree-cutters and searching for alternative Null-
stellensatz certificates. When testing for a degree four cer-
tificate, the smallest of these graphs (88 vertices and 146
edges) yielded a linear system with 1,170,902,966 non-zero



Graph n m sec
Mycielski 7 95 755 .46
Mycielski 9 383 7,271 | 268.78
Mycielski 10 767 | 22,196 | 14835
(8,3)-Kneser 56 280 .07

(10, 4)-Kneser | 210 1,575 3.92

(12,5)-Kneser | 792 8,316 | 466.47
(13,5)-Kneser | 1,287 | 36,036 | 216105
ash331GPIA 662 4,185 13.71
ash608GPIA | 1,216 | 7,844 34.65
ash958GPIA | 1,916 | 12,506 | 90.41
1-Insertions_5 202 1,227 1.69

2-Insertions_5 597 3,936 18.23
3-Insertions_5 | 1,406 | 9,695 83.45

Table 1: Graphs without 4-cliques.

entries and 390,340,149 columns. A matrix of this size is not
computationally tractable at this time.

Recall that the certificates returned by NulLLA consist of a
single vertex polynomial (via preprocessing), and edge poly-
nomials describing either the original graph in its entirety,
or a non-3-colorable subgraph from the original graph. For
example, if the graph contains a 4-clique as a subgraph, of-
ten the Nullstellensatz certificate will only display the edges
contained in the 4-clique. In this case, we say that NulLA
isolates a non-3-colorable subgraph from the original graph.
The size difference between these subgraphs and the input
graphs is often dramatic, as shown in Table 2.

subgraph subgraph
Graph n m vertices edges

miles1500 128 10,396 6 10
hamming8-4 256 20,864 19 33
Mycielski 10 767 22,196 11 20
(12, 5)-Kneser 792 8,316 53 102
dsjc1000.1 1,000 | 49,629 15 24
ash608GPIA | 1,216 | 7,844 23 44
3-Insertions_5 | 1,406 | 9,695 56 110
ash958GPIA | 1,916 | 12,506 24 45

Table 2: Input G vs. non-3-colorable subgraph.

An overall analysis of these computational experiments
shows that NulLA performs best on sparse graphs. For ex-
ample, the 3-Insertions_5 graph (with 1,406 nodes and
9,695 edges) runs in 83 seconds, while the 3-FullIns_5
graph (with 2,030 nodes and 33,751 edges) runs in 15027 sec-
onds. Another example is p_hat700-2 (with 700 nodes and
121,728 edges) and will199GPIA (with 701 nodes and 7,065
edges). NulLA proved the non-3-colorability of will1199GPIA
in 35 seconds, while p_hat700-2 took 30115 seconds.

Finally, as an informal measure of the distribution of de-
gree one certificates, we generated random graphs of 16
nodes with edge probability .27. We selected this probability
because it lies on the boundary between feasible and infeasi-
ble instances. In other words, graphs with edge probability
less than .27 were almost always 3-colorable, and graphs
with edge probability greater than .27 were almost always
non-3-colorable. However, we experimentally found that an
edge probability of .27 created a distribution that was al-
most exactly half and half. Of 100 trials, 48 were infeasible.
Of those 48 graphs, 40 had degree one certificates and 8 had
degree four certificates. Of these remaining 8 instances, we
were able to find degree one certificates for all 8 by append-
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ing degree-cutters or by finding alternative Nullstellensatz
certificates. This tentative measure indicates that non-3-
colorability certificates of degrees greater than one may be
rare.

Graph n m sec
miles500 128 2,340 1.35
miles1000 128 6,432 7.52
miles1500 128 10,396 24.23

mulsol.i.5 197 3,925 6
zeroin.i.1 211 4,100 6
queenl6_16 256 12,640 106
hamming8-4 256 20,864 621.1
schooll_nsh 352 14,612 210.74
MANN_a27 378 70,551 | 9809.22
brock400_4 400 59,765 | 4548.59
gend00_p0.9.65 | 400 71,820 | 9608.85
le450_5d 450 9,757 304.84
fpsol2.i.1 496 11,654 93.8
C500.9 500 112,332 72752
homer 561 3,258 8
p-hat700-2 700 121,728 30115
willl99GPIA 701 7,065 35
inithx.i.1 864 18,707 | 1021.76
qg.order30 900 26,100 13043
wap06a 947 43,571 1428
dsjc1000.1 1,000 | 49,629 | 2981.91
5-Fulllns_4 1,085 | 11,395 200.09
3-Fulllns_5 2,030 | 33,751 | 15027.9

Table 3: Graphs with 4-cliques.

4.4 NulLa vs. other algorithms

In this section, we compare NulLLA to two other algebraic
methods for detecting 3-colorability; the Alon-Tarsi (AT)
method, and the Grobner basis (GB) method. We also
briefly comment on NullLA’s relation to well-known graph
coloring heuristics such as DSATUR and Branch-and-Cut
[12]. We implemented the Alon-Tarsi method in C++, and
used CoCoA Lib [4] to test the Grébner basis method. For
brevity, we do not record any “internal data” about the var-
ious algorithmic runs, such as the size of the underlying
linear systems solved by NulLA or the maximum number of
monomials in the normal forms produced by the Alon-Tarsi
method. In the tables below, all certificates have degree one,
n refers to the number of vertices, m refers to the number
of edges and a “~” signifies that the method was terminated
after 4 hours of computation.

The Grobner basis method refers to simply taking the
Grobner basis of the ideal defined in Lemma 3.1. By Hilbert’s
Nullstellensatz, the Grobner basis is a constant if and only
if the graph is non-3-colorable.

The Alon-Tarsi method is based on the following (see Sec-
tion 7 of [1] and references therein):

THEOREM 4.1. Given a graph G with n vertices, let I =

(3 —1,...,23 —1). Additionally, let
Pe = H (zi — z5)
(1,5)€EE(G)

Then Pg € I if and only if G is non-3-colorable

In order to compute with the Alon-Tarsi method, we note
that the set B = {2} — 1,...,22 — 1} is a Grobner basis
for Ig. Thus, we simply take the normal form of Pg with



respect to B. If the normal form is zero, Pg € I, and the
graph is non-3-colorable. The efficiency of the Alon-Tarsi
method can be increased by incrementally constructing Pg
[7]: we order the edges, and then find the normal form of
(zi, — xj,) with respect to B, and then the normal form of
(zi, — zj, )(xi, — xj,) with respect to B, etc.

We compared NulLLA to the Grobner basis and Alon-Tarsi
methods on graphs with and without 4-cliques; results are
displayed in Tables 6 and 7, respectively.

NulLA consistently greatly out-performed the Groébner
basis method. For example, on zeroin.i.1, NulLA ran in
6 seconds, while CoCoA Lib took almost one hour. These
experimental results indicate that NulLLA scales better than
the Grobner basis method.

NulLLA also compared extremely favorably with the Alon-
Tarsi method, which usually did not terminate within the
requisite time bounds. However, in the special case when
the first few vertices and edges of the graph happen to de-
scribe a non-3-colorable subgraph (such as a 4-clique, or the
Grotzch graph), the Alon-Tarsi method ran very quickly,
because of the iterative approach incorporated during im-
plementation. Consider the example of the ninth Mycielski
graph (383 vertices and 7,271 edges): the Alon-Tarsi method
terminated in .24 seconds, but after we permuted the ver-
tices and edges, the method consumed 9 GB of RAM over
4 hours of computation and only processed 30 edges. This
example shows that the Alon-Tarsi method is extremely sen-
sitive to the vertex and edge ordering. If a similiar iterative
approach was incorporated either into NulLA or the Gréb-
ner basis method, these algorithms would likewise terminate
early in this special case.

As another example of the draw-backs of the Alon-Tarsi
method, we considered edge-critical graphs, where the entire
input must be read. For example, the odd wheels form a triv-
ial family of edge-critical non-3-color-able graphs. The Alon-
Tarsi method was unable to determine the non-3-colorability
of the 17-odd-wheel (18 vertices and 34 edges): after two
hours of computation, the normal form contained over 19
million monomials, and had consumed over 8 GB of RAM.
The experimental results are displayed in Table 4.

Wheels n m NulLA GB AT
9 10 18 0 0 .05
11 12 22 0 0 .74
13 14 26 0 0 8.47
15 16 30 0 0 369.45
17 18 34 0 0 -

151 152 302 21 2.21 -
501 502 1,002 15.58 126.83 -
1001 1,002 | 2,002 622.73 1706.69 -
2001 2,002 | 4,002 12905.6 - -

Table 4: NulLA, GB and AT on wheel graphs.

We conclude with a short comment about NulLLA’s rela-
tion to DSATUR and Branch-and-Cut [12]. These heuris-
tics return bounds on the chromatic number. In Table 5
(data taken from [12]), we display the bounds returned by
Branch-and-Cut (B&C) and DSATUR, respectively. In the
case of these graphs, NulLA determined non-3-colorability
very rapidly (establishing a lower bound of four), while the
two heuristics returned lower bounds of three and two, re-
spectively. Thus, NulLA returned a tighter lower bound on
the chromatic number than B&C or DSATUR.
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B&C ||DSATUR |NulLA
Graph n m b up [[Ib up sec
4-Insertions_3 79 156 3 4 |2 4 0
3-Insertions. 4 281 1,046 |3 5 |2 5 1
4-Insertions_ 4 475 1,795 |3 5 |[2 5 3
2-Insertions 5 597 3,936 ||3 6 |2 6 12
3-Insertions_5 1,406 9,695 |3 6 || 2 6 83

Table 5: NulLA vs. Branch-and-Cut and DSATUR.

Graph n m NulLA GB AT
miles500 128 2,340 1.35 133.91 .07
miles1000 128 6,432 7.52 802.23 0
miles1500 128 10,396 24.23 2598.84 .01
mulsol.i.5 197 3,925 6 18804.5 0
zeroin.i.1 211 4,100 6 2753.37 0
queenl6_16 256 12,640 106 59466.9 0
hamming8-4 256 20,864 621.1 - -
le450_5d 450 9,757 304.84 - -
homer 561 3,258 8 - -
dsjc1000.1 1,000 | 49,629 || 2981.91 - -
5-Fulllns 4 | 1,085 | 11,395 200.09 - 557.12
3-Fulllns 5 | 2,030 | 33,751 || 15027.9 - 3.97

Table 6: NulLA, GB, AT on graphs with 4-cliques.

Graph n m NulLA GB AT
Mycielski 4 11 20 0 .01 22
Mycielski 5 23 71 0 .08 .23
Mycielski 6 47 236 .04 3.99 .22
Mycielski 7 95 755 .46 179.94 .23
Mycielski 8 191 | 2,360 7.72 9015.06 .23
Mycielski 9 383 | 7,271 268.78 - 22
Myclelski® | 383 | 7,271 || 497.47 - -
(6,2)-Kneser 15 45 0 .03 1.87
(8, 3)-Kneser 56 280 .07 18.39 -

(10,4)-Kneser | 210 | 1,575 3.92 9771.76 -
(12,5)-Kneser | 792 | 8,316 || 466.47 - -
ash331GPIA | 662 | 4,185 13.71 - -
1-Insertions_4 67 232 .04 3.71 -
2-Insertions_4 | 149 541 .26 32.42 -
1-Insertions_5 | 202 | 1,227 1.69 940.7 -
3-Insertions_4 | 281 | 1,046 .97 237.69 -
4-Insertions_ 4 | 475 | 1,795 3.02 1596.35 -
2-Insertions_5 | 597 | 3,936 18.23 - -

Table 7: NulLA, GB, AT on graphs w/o 4-cliques.

5. CONCLUSION

We presented a general algebraic method to prove com-
binatorial infeasibility. We showed that even though the
worst-case known Nullstellensatz degree upper bounds are
doubly-exponential, in practice for useful combinatorial sys-
tems, they are often much smaller and can be used to solve
even large problem instances. Our experimental results il-
lustrated that many benchmark non-3-colorable graphs have
degree one certificates; indeed, non-3-colorable graphs with
certificate degrees larger than one appear to be rare. We
also showed that NulLA compares well with other algebraic
methods and popular heuristics for colorability.
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