
MATH 800, Assignment 2, Fall 2023

Instructor: Michael Monagan

Due 11pm Tuesday October 10th

Question 1 (12 marks)

Part (a) Use Maple to compute and simplify the following sums. The first sum is for
the number of multiplications of the forward elimination step of Gaussian elimination
for an n by m matrix. The second sum is for the number of multiplications of the
Gentleman/Johnson algorithm for computing the deterinant of an n by n matrix. Use
the sum(f(k),k=m..n) command.
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Part (b) By hand, for moduli m1 = 5,m2 = 6,m3 = 7 and images u1 = 2, u2 =
3, u4 = 2 find the integer u s.t. u ≡ ui mod mi for 1 ≤ i ≤ 3 and 0 ≤ u < m1m2m3.
Use the mixed radix representation for u, namely, u = v1 + v2m1 + v3m1m2 where
0 ≤ vi < mi.

Part (c) Consider the Lagrange representation for the integer u in part (b), namely,
u = v1m2m3 + v2m1m3 + v3m1m2. Find integers v1, v2, v3 such that u ≡ ui mod vi
and 0 ≤ vi < mi for the problem in part (b).

Part (d) The Lagrange integer u will not always satisfy 0 ≤ u < m1m2m3. How big
can u be for m1 = 5,m2 = 6,m3 = 7? Find u1, u2, u3 that maximize u.

Question 2: The Bareiss/Edmonds Algorithm

Part (a) (8 marks)

For an n by n matrix A with integer entries, implement the Bareiss/Edmonds algorithm as
the Maple procedure FFGE(A,n) that outputs det(A).
Letting A00 = 1, assuming pivoting is not needed, the algorithm is

for k = 1, 2, 3, ..., n− 1 do
for i = k + 1, k + 2, ..., n do

for j = k + 1, k + 2, ..., n do

Aij :=
AkkAij −AikAkj

Ak−1k−1
end for

end for
Aik := 0

end for.
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Use the iquo(...) command for the integer division.
You will need to take care of pivoting: if at any step k, the matrix entry Ak,k = 0

and Ai,k 6= 0 for some k < i ≤ n, then interchange row k with row i before proceeding.
Remember, interchanging two rows of a matrix changes the sign of the determinant.

Test the algorithm on the following random integer matrices. Please print out the matrix
A after executing the algorithm (the matrix A is updated by the algorithm) and check that
An,n = ±det(A).

> c := rand(10^4):

> for n from 3 to 4 do

> A := Matrix(n,n,c);

> FFGE(A);

> A;

> od;

For parts (b) and (c) we will investigate the intermediate expression swell that occurs
if we use the Bareiss/Edmonds algorithm to compute the determinant of a matrix with
polynomial entries. For our experiment we will use the generic symmetric matrix Sn(x).
Below is the generic 3 by 3 symmetric matrix.

S3 =

 x1 x2 x3
x2 x4 x5
x3 x5 x6


Now detS3(x) = x1x4x6−x1x25−x22x6+2x2x3x5−x23x4 which is a polynomial in x1, x2, ..., x6.
We will run the Bareiss/Edmonds algorithm in the integral domain Z[x1, x2, . . . , x6].

Part (b) (5 marks)

First write a Maple procedure GenSymMat(n,x) that creates a generic n by n symmetric
matrix Sn(x). Now use Maple’s Determinant command from the LinearAlgebra package
to compute the number of terms of detSn(x) for n = 3, 4, 5, ..., 9. Do not print out the
determinants Sn(x) as they are very big! To compute #f , the number of terms of a
polynomial f , use this command.

numterms := proc(f) if f=0 then 0 elif type(f,‘+‘) then nops(f) else 1 fi end;

Part (c) (5 marks)

Modify your implementation of the Bareiss/Edmonds algorithm from part (a) to work for
polynomials in Z[x1, x2, ..., xm]. You just need to expand the numerator a = AkkAij−AikAkj

and, for the division by b = Ak−1k−1, use the divide command divide(a,b,’q’); which
returns true if b|a and false otherwise. If b|a it assigns q the quotient of a ÷ b. Test your
algorithm on S3(x).
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The largest expression swell occurs at the final step when k = n− 1, i = n, j = n where
we compute Ann = ±det(A) using

Ann :=
An−1n−1Ann −Ann−1An−1n

An−2n−2
.

Let N be the numerator in the fraction. We have

N = AnnAn−2n−2 = ±det(A)An−2n−2

Modify your code to compute the expression swell, that is, how much bigger N is than
detA. Compute and print out #An−2n−2, #Ann, #N and the expression swell #N/#Ann.
Do this for Sn for n = 3, 4, 5, 6, 7, 8. Do not try n = 9 unless your computer has 100
gigabytes of RAM!

For parts (d) and (e) let F be a field, D = F [x] and A be an n by n matrix over D. We
will compare two algorithms for computing detA, the Bareiss/Edmonds algorithm and an
algorithm based on interpolation to see which is fastest.

Part (d) (9 marks)

If we assume deg(Ai,j) ≤ d and classical quadratic algorithms are used for polynomial multi-
plication and exact division in F [x], how many multiplications in F does the Bareiss/Edmonds
algorithm do in the worst case?

Try to get an exact formula in terms of n and d assuming deg(Ai,j) = d. I suggest you do
this for a 3x3 matrix first. Note, to divide a polynomial in F [x] of degree d by a polynomial
of degree m ≤ d, the classical division algorithm does ≤ m(d−m+ 1) multiplications in F .

Use Maple’s sum(...) command to evaluate any sums that you need.
You should get a polynomial in n and d of degree 6.

Part (e) (6 marks)

Consider the following algorithm for computing detA where the entries of A are in F [x].
Assume again that deg(Aij) ≤ d. We have deg(det(A)) ≤ nd. Assume also that the field F
satisfies |F | > nd.

1. Pick nd+ 1 distinct points α0, α1, . . . , αnd from F .

2. Compute Bi = A(x = αi) for 0 ≤ i ≤ nd.

3. Compute yi = det(Bi) using Gaussian elimination over F .

4. Interpolate x in detA.

How many multiplications in F does this algorithm do?
Does it do fewer multiplications than the Bareiss/Edmonds algorithm?
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Question 3: Solving Ax = b using p-adic lifting and rational reconstruction.

Part (a) (6 marks)

Implement Wang’s rational number reconstruction algorithm as the Maple procedure
WangRNR(u,m,N,D). Assume 2ND < m. To do this just modify my Maple code in the
handout for the extended Euclidean algorithm (attached). If the gcd condition does not
hold then return the value FAIL. Execute Wang’s algorithm on the following input

> m := 35;

> r := [ seq( WangRNR(u,m,4,4), u=0..m-1 ) ];

Observe that all rationals n/d satisfying |n| ≤ 4 and 0 < d ≤ 4 appear once in r and no
other fractions do.

Part (b) (9 marks)

Let A ∈ Zn×n and b ∈ Zn. In class we studied an algorithm for solving Ax = b for x ∈ Qn

using linear p−adic lifting and rational number reconstruction. Implement the algorithm
in Maple as the procedure PadicLinearSolve(A,b). Use the prime p = 231 − 1. Your
procedure should return the solution vector x and also print out the number of lifting steps
k that are required. Test your implementation on the following examples. The first has
large rationals in the solution vector. The second has very small rationals.

> with(LinearAlgebra):

> B := 2^16;

> m := 3;

> U := rand(B^m);

> n := 50;

> A := RandomMatrix(n,n,generator=U);

> b := RandomVector(n,generator=U);

> x := padicLinearSolve(A,b);

> convert( A.x-b, set ); # should be {0}

> y := [1,0,-1/2,2/3,4,3/4,-2,-3,0,-1];

> y := map( op, [y$5] );

> x := Vector(y);

> b := A.x;

> A,b := 12*A,12*b; # clear fractions

> x := padicLinearSolve(A,b);

> convert( A.x-b, set ); # should be {0}

To compute A−1 mod p use the Maple command Inverse(A) mod p.
The Inverse command runs Gaussian elimination on the bookkeeping matrix [A|I] over
the field Zp. To multiply A times a vector x over Z use A.x in Maple.
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For rational number reconstruction use the Maple command iratrecon. Note, if u is a
vector of integers modulo m, iratrecon(u,m) will automatically apply rational reconstruc-
tion to each entry in u separately.

The Extended Euclidean Algorithm

>

> EEA := proc(m,u) local s,t,r,q,i;

> r[0],r[1] := m,u;

> # s[0],s[1] := 1,0;

> t[0],t[1] := 0,1;

> printf("\n");

> printf("%4s %10s %10s %10s %12s\n","i","r[i]","t[i]","q[i+1]","r[i]/t[i]");

> for i from 1 while r[i]<>0 do

> q[i+1] := iquo(r[i-1],r[i]);

> r[i+1] := r[i-1]-q[i+1]*r[i];

> # s[i+1] := s[i-1]-q[i+1]*s[i];

> t[i+1] := t[i-1]-q[i+1]*t[i];

> printf("%4d %10d %10d %10d %12a\n",i,r[i],t[i],q[i+1],r[i]/t[i]);

> od:

> end:

>

> m := 10^6-17;

m := 999983

> u := 72/109 mod m;

u := 137613

> EEA(m,u);

i r[i] t[i] q[i+1] r[i]/t[i]

1 137613 1 7 137613

2 36692 -7 3 -36692/7

3 27537 22 1 27537/22

4 9155 -29 3 -9155/29

5 72 109 127 72/109

6 11 -13872 6 -11/13872

7 6 83341 1 6/83341

8 5 -97213 1 -5/97213

9 1 180554 5 1/180554
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