
MATH 800 Assignment 3, Fall 2023

Instructor: Michael Monagan

Please hand in the assignment by 11pm Monday October 23rd.
Late Penalty -20% off for up to 24 hours late. Zero after that.
For Maple problems, please submit a printout of a Maple worksheet containing Maple
code and the execution of examples.

Question 1 : Recurrences (10 marks)

(a) Solve the following recurrences using the rsolve command in Maple. The first
is for the number of multiplications in the Berkowitz algorithm. The second is
for the number of multiplications in the optimized FFT where the powers of ω
have been pre-computed.

(1) M(n) = M(n − 1) + r + (r − 1)(r2 + r) +
∑r

k=1

∑r−k
j=0 1 where r = n − 1

and with initial value M(1) = 0.

(2) T (n) = 2T (n/2) + 1
2
n with initial value T (1) = 0.

(b) A first implementation of the FFT might allocate space for two intermediate ar-
raysB and C, each of size n/2, to store [a0, a2, a4, . . . , an−2] and [a1, a3, a5, . . . , an−1]
respectively. Thus we need space for n elements of the field F in total. But
the FFT is recursive so the recursive calls will allocate more arrays. How many
arrays are allocated in total? How much space is allocated in total?

Let A(n) be the number of temporary arrays allocated. Let S(n) be the number
of elements of storage allocated for all the temporary arrays. Give recurrence
relations for A(n) and S(n) and initial values for A(1) and B(1). Solve the
recurrences by hand.

Question 2: The Fourier Transform (10 marks)

(a) (6 marks) Let n = 2m and let ω be a primitive n’th root of unity. To apply
the FFT recursively, we use the fact that ω2 is a primitive m’th root of unity.
Prove this.

Also, for p = 97 = 3 × 25 + 1, find a primitve 8’th root of unity in Zp. You
may use Maple’s numtheory[primroot] command to find a primitive element α
for Zp.

1



(b) (4 marks) Let ω be a primitive n’th root of unity. What is the Fourier Transform
for the polynomials (i) a(x) = xn + c where c is a constant, and (ii) a(x) =
1 + x+ x2 + . . .+ xn−1, i.e., what are the vectors [a(1), a(ω), . . . , a(ωn−1)]?
No justification needed.

Question 3 Coding the FFT and Fast Multiplication (15 marks)

(a) (10 marks)
Program the FFT in Maple as a recursive procedure. Your Maple procedure
should take as input (n,A, p, ω, T ) and any other values that you need.

Here n is a power of 2, A is an array of size n indexed from 0 for storing the
input coefficients a0, a1, . . . , an−1, p is a prime, ω is a primitive n’th root of unity
in Zp and T is a temporary array of size n indexed from 0.

Your procedure may not allocate any temporary arrays. Use T as needed. If
you want to precompute an array W = [1, ω, ω2, . . . , ωn/2−1] of the powers of ω
to save 1

2
the multiplications you may do so for 3 bonus marks.

Test your procedure on the following input. Let A = [1, 2, 3, 4, 3, 2, 1, 0], p = 97
and w be the primitive 8’th root of unity. To check that your output B is
correct, verify that FFT (n,B, p, ω−1, T ) = nA mod p.

(c) (5 marks)
Let a(x) = −x3 + 3x + 1 and b(x) = 2x4 − 3x3 − 2x2 + x + 1 be polynomials
in Z97[x]. Use your FFT code from part (a) to calculate the product of c(x) =
a(x)b(x).

Question 4 : Fast Division (10 marks)

Consider computing the quotient of a ÷ b in F [x]. To use the fast method we need
to compute f−1 to O(xn) where n = deg a − deg b + 1 and f = br. Write a Maple
procedure FastNewton(f,x,n,p) that computes f−1 to O(xn) for F = Zp using a
Newton iteration.

Use Expand(...) mod p; for the polynomial multiplications so you get Maple’s
fast multiplication. To make the Newton iteration efficient when n is not a power
of 2, compute y = f−1 recursively to order O(xdn/2e). To truncate a polynomial b
modulo xn you could use rem(b,x^n,x). Use convert(taylor(b,x,n),polynom)

instead which is more efficient.

Test your algorithm on the following problem in Zp[x].

> p := 11;

> f := 3+x+4*x^3+x^5;

> FastNewton(f,x,6,p);

10x5 + 7x4 + 10x3 + 9x2 + 6x+ 4

2



Question 5 Applying the FFT (10 marks)

Let a(x) =
∑n−1

i=0 aix
i. Let Fω : F n → F n denote the Fourier transform, that is

Fω([a0, a1, a2, . . . , an−1) = [a(1), a(ω), a(ω2), . . . , a(ωn−1)].

Let F−1ω denote the inverse transform, i.e.,

F−1ω (b) =
1

n
Fω−1(b).

(a) (5 marks)

Suppose we have three polynomials a, b, c ∈ F [x] of degree d and we want to
compute g(x) = 3ab + 5ac + 7bc. If use use the FFT to multiply the three
products ab, ac and bc, separately, how many calls to the FFT algorithm will
we make?

Reorganize the computation to optimize the number of calls to the FFT. De-
scribe your algorithm in terms of vector operations in F n and calls to Fω and
F−1ω . How many calls to the FFT does your optimized algorithm make?

(b) (5 marks) In the product tree algorithm we need to multiply monic polynomials
a and b of degree d = 2i for some i. Let c = ab = x2d+∆(x) where deg(∆) < 2d.
Using our FFT multiplication algorithm we need n > deg(c) = 2d so we would
need FFTs of size n = 4d. Let’s try do the multiplication using FFTs of size
2d which will save a factor of two in time and space. Let n = 2d and let ω be a
primitive n’th root of unity. What is Fω(c)? Explain how can you modify the
FFT multiplication algorithm so that you can recover c(x) from Fω(c) efficiently.

3


