
Sparse Polynomial Arithmetic

Stephen C. J o h n s o n

B e l l T e l e p h o n e L a b s

M u r r a y H i l l , N . J.

A B S T R A C T

Sparse polynomial representations are used in a number of algebraic manipulation
systems, including Aitran. This paper discusses the arithmetic operations with sparsely
represented polynomials; we give particular attention to multiplication and division• We
give new algorithms for multiplying two polynomials, with n and m terms, in time
mnlogm; these algorithms have the property that, in the usual univariate dense case, the
algorithm is bounded by ran. Division algorithms are discussed which run in comparable
time.

Section O: Introduction

A univariate polynomial of degree d in an in-
determinate x is usually represented as

d

~ a i X i

We shall refer to this as the dense representation
of a polynomial.

If many of the a i are zero, it is natural to ex-
amine the sparse representation

n

~ a i X a i

where we require that each a i be nonzero• n is
called the n u m b e r o f terms in the sparse poly-
nomial. Note that 0 is represented by a po-
lynomial with 0 terms.

In order to permit rapid comparison of two
polynomials, and simplify arithmetic computa-
tion, we usually require that the exponents ct i be

strictly ordered; we shall assume that the a j are
decreasing:

a i > 0 ~ i + 1 , i = 1 n - -1

We shall informally call a polynomial sparse if its
dense representation has many zero coefficients,
and dense otherwise.

We generalize these notions to multivariate
polynomials in the obvious way; if we have in-
determinates x I x v, and a polynomial of de-
grees d 1 d v, the dense representation is

d 1 d

v~O i l iv . . . ail i vX1 • . . x v
i I = 0 i

and the sparse representation is

• . . X v
i~ l

As in the univariate case, we wish the ex-
ponent v-tuples to be distinct; it is convenient to
order the v-tuples (O~il Otiv) lexicographical-
ly strictly decreasing (although other orderings are
used - - see [1]).

In the multivariate case, the dense poly-
nomial representation can take truly staggering
amounts of space. For example, the ten term
polynomial

yo + Y l X + . . . +y9 x9

in the indeterminates x, Yo , y 1 Y9, is
represented by 10240 coefficients in the dense
representation, most of which are zero. For this
reason, most algebraic manipulation systems
represent multivariate polynomials in some
manner which capitalizes on blocks of zero
coefficients; the two most frequent means are re-
cursive univariate representation and sparse
representation. In this paper, we consider only
the sparse representation.

In practice, we are usually prepared to set
upper limits I i on the largest exponent which we
will encounter for each indeterminate x i. In this
case, we can map the multivariate computations
into univariate ones as follows: each exponent v-
tuple

63

(Ceil air)

gets mapped into

°ti "~ (" " " (~i112 "1- c~i2)/3 -I- • • •)i v "l-air

If c~# < / / , for j =2 v, then the c~ i are strict-
ly decreasing if and only if the (a i l ~/ i) are
in strictly decreasing lexicographic order. As long
as the exponents remain within these bounds, the
set of sparsely represented multivariate poly-
nomials is mapped isomorphically into the set of
sparsely represented univariate polynomials.
Since univariate polynomials have notational and
conceptual advantages, we will describe algor-
ithms in terms of univariate sparse polynomials;
the algorithms are easily translatable to the mul-
tivariate case.

Section 1: Sparse Computations

There is little theoretical knowledge about
sparse polynomial algorithms. In the dense case,
fast Fourier transform, interpolation, and "divide
and conquer" techniques can (at least asymptoti-
cally) significantly speed up polynomial multipli-
cation [2,3]; in contrast, the useful sparse algor-
ithms have a decidedly "classical" flavor.

There are no known nontrivial upper or
lower bounds for the time taken by multiplica-
tion, and it is not even known whether there ex-
ists an algorithm to multiply two n term sparse
polynomials in time O(n2).

We shall study the four arithmetic operators
on sparse univariate polynomials; our basic meas-
ure of the complexity of the problem is the
number of terms in the operand polynomials.
Thus, in general we wish to compute

n m fl K

Za,x op '=Zckx'k
i ~ l .]~1 k ~1

where op is one of the four arithmetic operators,
the exponents of each polynomial are in strictly
decreasing order, and each coefficient is nonzero.

When we are given a sparse polynomial
operation, the work (assuming that we stick to
classical methods) can be divided into parts: com-
puting the terms of the answer, and ordering
them. The first part includes the cost of
coefficient operations and (in the case of multipli-
cation and division) exponent additions and sub-
tractions. The second part includes the cost of
exponent comparisons, and any other bookkeep-
ing needed to order the terms in the answer.

If we compare the costs of two methods of
doing a polynomial operation on given inputs, we
will see that the methods differ only in the costs
associated with the second parts of the algor-
ithms. All of the operations in the first part are

demanded by the mathematical definitions, and
must get performed in some order. Also, in gen-
eral we can assume that the bookkeeping in-
volved in the second part is proportional to the
number of exponent comparisons. Thus, we shall
compare methods on the basis o f the number o f ex-
ponent comparisons.

This has the disadvantage that the true costs
are not proportional to the number of exponent
comparisons, since the true cost also includes
coefficient operations. In Altran [5], Version 1.8,
we estimate that, for large polynomial multiplica-
tions (e.g., 100 by 100 terms), the cost of ex-
ponent comparisons is about one half of the total
multiplication cost.

To offset this disadvantage, there is the ad-
vantage that the number of comparisons can be
measured without reference to a particular data
structure, machine architecture, or implementa-
tion language. Thus, these results can hopefully
be applied outside of the particular environment
where they were developed.

Section 2: Addition and Subtraction

Throughout this section, we will discuss addi-
tion only; the results hold for subtraction with
the obvious sign changes.

The simplest way of adding two sparse poly-
nomials would appear to be:

1. Concatenate the two polynomials to obtain
one with n + m terms.

2. Sort the terms into decreasing order by ex-
ponent.

3. Make a pass through the sorted terms;
two adjacent terms with the same ex-
ponent are replaced by a single term,
whose coefficient is the sum of the
coefficients of the ' components. If the
resulting coefficient is zero, the entire term
is deleted.

A simple analysis shows that this algorithm
is dominated by the cost of the sort in Step 2,
which is (n+m) log(n+m) . Moreover, this algor-
i thm uses space n + m when the answer may be
smaller than that due to combination or cancella-
tion of terms. An improved algorithm is easily
stated, provided that the input terms are sorted in
decreasing exponent order. The central idea is
the following: generate the answer, term by term, in
descending exponent order.

At each stage of the addition, there will be

an index i such that each term before x ~ has

been entered into the sum, but x ~i has not yet
entered into the sum; similarly, there will be

64

another index j for the other addend. The next

term added to the sum will be the one of x '~j and

x ~i of highest exponent. The complete algorithm
follows:

To compute:

n m B K
Z ,x + Zh x ' = Z

given that the oti and/~ i are in descending order,
and the a i and hi are nonzero.

k = O
i = l
j - ~ l
whi le (i~<n and j~<rn) {

k = k + 1
if (a i < flj) {

Ck ~hJ
'Ylk = ~ j
.j ~-j + l
}

e l s e i f (a i = ~]) {
c~ = a t + b /

~/k =°ti
i f (c k = 0) k = k - - 1
i = i + 1
.j = j + 1
}

e l s e i f (ot i >]~i) {

c k -~ a i
• k =°ti
i = i + l
}

I
whi le (i ~ n) {

k - - k + l

c k ~ a i
~l k "~°t i
i = i + l
}

whi le (j ~ < m) {
k = k + l

Ck =hi
"Yk m~j
.j = j + 1
I

K = k

Again, a simple analysis serves to show that
the computing time is order n + m . In effect, the
algorithm does a merge of the exponent se-
quences, combining terms with equal exponents
and throwing out cancelled terms as it goes. A
complete analysis of the running time in terms of
the inputs is not very interesting; we turn instead
to multiplication.

Sect ion 3: Mult ip l icat ion - - Part I

Multiplication is a much harder problem.
The naive approach would again generate all mn
terms, sort them, and merge terms with equal
exponents; the sort once again dominates this
process, and we obtain a running time bounded
by mnlog(mn). The space required, rnn, is fre-
quently prohibitive, as well as being considerably
larger than the answer in many cases.

We may also consider the multiplication as a
sum of n polynomials

a,x °, Zh, x , = Z Z ,h,x
ij=1 j ~1 lj=i "

The n summands are easily generated; however,
we must be careful how we generate the sum. If
we add the n summands one by one into the final
sum, in the worst case (with no combination of
terms) there may be im terms after i - 1
summations; the ith summation thus costs
im+m. We have a worst case total cost which
could grow as

n--I

(i + 1)m
i ~ l

which is order of n2m operations.

Presumably we would choose n to be smaller
than m; nevertheless, n2rn is worse asymptotic
behavior than mnlog(nm).

If we are clever about the way in °,vhich we
add the n summands we can improve on this
time, however. Using the "divide and conquer"
approach, we can sum n polynomials by recur-

n n sively summing the first ~ and the last ~ and

then summing. If C (n) i s the cost of adding n
polynomials of size m, this argument shows us
that, in the worst case,

or

C(n) ~'mn + 2 C(-~-)

Thus C (m) g r o w s with order mnlogn. Note that
this approach is simply a " tournament" merge of
n inputs.

We now consider a class of methods based
on the idea that we should at tempt to generate
the answer term by term in order of decreasing
exponents. The desired product is the sum of the
mn terms of the form

aib/x~i +~i.

65

Because the tz i and the/3~ are ordered, we know
a great deal of a priori information about the ord-
ering of these terms. In particular, we know that
the term with exponent a i + ~ i appears in the
product strictly before the term with exponent
czi+/3/+ 1. Thus, at each step in these algor-
ithms, and for each i with l~,i~<n, there will be
an integer ./~. such that terms with exponent
oti+~. / have been included in the answer for
j < f / , and have not been included when j > / f i .
The exponent of the next term to be included in
the answer will be the largest of the czi+/3f, .,

where i ranges from 1 to n. I f f i is larger than m,
we need not consider this value of i any longer.
The ./~ are decreasing with i; otherwise, a term
would have been added to the answer before
another that is clearly larger. Thus, if f / > m
for some index /, then ~. > m for all indices j
with j~<i. We maintain an index I which is the
smallest i such that f / ~< m.

The basic algorithm follows:

To compute the product:

aix i x ! = Z Ck X'yk
k = l

given that the a i and 13j are in descending order,
and all the a i and hi are nonzero.

if (m = 0 or n=O) {
K = O
return
}

k = l
C 1 = 0
~1 =,Oq +/3 l
for i = l to n do f i = l
I = 1
while (1~< n) {

{ Find an s with I ~< s ~< n which
maximizes a s +13.f s }

i f (Yk # as+13~) {
i f (Ck # 0') {

k = k + l
Ck =O
)

"Y k = a s + #~
}

C k "~C k -t- asbfs

f s =fs + 1
i f (f s > m) I = I + 1
}

K = k

The step which "finds s" in the above is the
central problem of this method. If we do the
linear search suggested by the wording, we re-

quire n - I comparisons to find s. This step is
done nm times, once for each term in the pro-
duct, so that the running time is order n2m.

We may reduce the asymptotic running time
by observing that we need not actually look at all
the n - - l + 1 exponents at each step, provided we
can always find the largest of this set. In effect,
we have a set of exponents for which we wish to
be able to

1. F ind and remove the largest e lement in
the set.

2. Insert a new element into this set. (Each
time we increment some f s , and fs ~< m, it
has the effect of putting the exponent
0% + B y s into the set.)

There are a number of data structures which
will maintain a set of H elements and permit
these two operations to be done in time bounded
by order of logH(See [3,4]). Perhaps the simplest
of these structures is a heap. In this, the H ele-
ments are kept in an array h with subscripts run-
ning from 1 to H, so that the elements satisfy

h i >i h2i

and

hi >/ h2i+ 1

whenever the subscripts are in the range 1 to H.
Thus, h I is always the largest of the set; the al-
gori thms for adding an e lement and removing the
largest e lement may be found in [3] or [4].

Applying this to multiplication, we may in-
troduce another array s i such that the sequence

asj +fl.t~ i , i = 1 n - - l + l

is heapsorted. Then a maximal exponent is al-
ways given by s 1, and the per term cost of the
process of running the heap is at most order of
Iogn. The total multiplication cost is thus bound-
ed by mnlogn.

This method requires relatively little (2n
words) auxiliary storage, and computes only the
terms which finally appear in the answer. Be-
cause the storage management is particularly sim-
ple and suited to a F O R T R A N environment (the
auxiliary arrays can be allocated before beginning
the multiplication), this algorithm was chosen to
implement polynomial multiplication in the initial
releases of Altran [5]. It is quite possible that a
system with another operating environment and
data representation would find the divide and
conquer algorithm superior.

The next section discusses some shortcom-
ings of this algorithm, and some proposed im-
provements, Section 5 gives some empirical simu-

66

lations, and Section 6 discusses division.

Sect ion 4: Mul t ip l i ca t ion - - Part II

Although the above heapsort multiplication
algorithm is asymptotically fast, it is far from per-
fect. For example, in the important special case
of dense univariate multiplication this algorithm
attains its worst case behavior (mnlogn), while
even the classical dense multiplication algorithm
is asymptotically mn. What is more interesting is
that the divide and conquer algorithm is also
asymptotically mn in this case; summing k con-
secutive polynomials with m terms yields at most
m + k - 1 terms when the summands arise from a
univariate dense multiplication. Thus, if C(n) is
the cost of adding n polynomials with m terms in
this case, we see that

C(n) < 2 C (- ~ -) + 2 (m + ~ - - 1)

from which we can show that C(n) grows asymp-
totically as mn (assuming n ~< m). We ask if it is
possible to make the heap algorithm work as well
in this special case.

As we have noted, the divide and conquer al-
gor i thm is more efficient in the dense case be-
cause the intermediate results have substantially
fewer terms than in the general case. This in
turn results from the large number of terms with
equal exponents generated during dense multipli-
cations. The basic heap algorithm as given in [3]
or [4] makes no use of equal elements, and thus
we obtain no improvement in the dense case.
Potentially, by cutting down on the size of the
heap, the recognition of equal exponents could
improve the heap algorithm dramatically.

When we run the heap process, we are con-
tinually making exponent comparisons, and we
may detect equalities. We wish to remember and
make use of these equalities without destroying
the advantages of the heap structure. Although
we are continuing to study this problem, we have
an interim solution which is well enough under-
stood to merit inclusion as Appendix A. This
program consists of two interface routines, insert
and remove, the main routine heaptfy, and a utility
routine sethole. There are three global variables
of interest: hsize, the size of the heap; h, an array
of elements with indices 1 through hsize, which
are the heaped elements; and hole, which is the
location of a hole in the heap, if any. The
routine insert inserts a new element in the heap;
the routine remove returns the largest element in
the heap, and heapify is called with the index of
at most one element in h which may not be in
heaped order; heaptfy restores the heap property

to h. When heapify discovers that two elements
h i and hj are equal, it may call chain(i, j); in this
case we assume that h/ is removed from the
heap, and a hole is left at position j. Presumably ,
the element h / i s chained to the element h i by a
mechanism which, for simplicity, we do not
describe. Thus, the elements of h are, in our new
multiplication algorithm, pointers to chains of
terms with equal exponents. The utility routine
sethole is used to set the global variable hole, in
order to detect the boundary condition where the
hole would be the last element of the heap; in
this case, hsize is decremented.

There is no reason to assume that this ver-
sion of heapify is optimal; in particular, it does
not always find equal exponents. As the next
section shows, however, it appears to represent a
substantial improvement over the current Altran
multiplication method. Other mechanisms such
as 2-3 trees or A v L trees [3,4] might lead to prac-
tical improvements as well, and these are being
studied.

In addition to improvements that can be
made by improving the heap algorithm, we can
make another improvement by studying the mul-
tiplication process more carefully. We observe
that a term of the form

aibjx ai +~/

appears in the product after both of the terms

ai-1 b lxa i - I +1~i (if i > 1)

and

aibi_l xai+oj-I (i f j > 1)

The algorithm given in the last section only
uses the second of these constraints. The first
can be quite easily used, at the cost of a slight in-
crease in the amount of logic. Whenever we use
a term with exponent a i+ /3 . f :, we must check

whether the two successors with exponents
o~i+ 1 +/3f~ and c~ i +/~f,,.+l are now candidates for

the next term. The first is a new candidate when
i + 1 ~ n and f /+ 1 =fd the second is a new can-
didate when f , . + l ~ m and either i = l or
f , - t > f , ' + 1. Thus, for each term placed into
the answer, we may generate 0, 1, or 2 successor
candidates.

These tests are easily made, and are effective
in reducing the average number of elements on
the heap, and thus the cost.

We have seen that, by recognizing equal ex-
ponents and examining only candidates we can
cut down on the number of terms which need to
be examined in order to find the next term. In

67

common with many asymptotically fast algor-
ithms, however, heapsort may not be best for
small problems. Thus, we shall examine another
algorithm, which we shall call the List-Insertion or
LI algorithm. In this algorithm, we keep the can-
didate exponent sets sorted on a list; equal ex-
ponent sets are chained so only one appears on
the list. The largest exponent is removed from
one end of the list, and a new candidate is added
at the other end and "bubbled" down to its
correct spot. This algorithm has an a priori worst
case behavior of n2m, so we can expect it to be
worse than the heap algorithm for large prob-
lems. As we shall see, however, it is a surpris-
ingly strong candidate for practical problems.

Section 5: Empirical Studies

In this section, we discuss an empirical study
of the number of exponent comparisons required
in the multiplication of two n term polynomials,
using the current Altran algorithm, the improved
heap algorithm, and the list insertion algorithm.

In obtaining empirical results, we wished to
control two parameters which appeared to be
crucial; problem size, n, and the frequency of
equal exponents. One particularly easy way of
controlling the number of equal exponents gen-
erated is by limiting the number of distinct ex-
ponent differences oti--oti_ 1 possible in the
problem; this number will be denoted S, and
called the structure number.

To generate a set of n exponents ~i with
structure S (for S a positive integer), we set

c~ 1 =0
ot i =ot i_ 1 + r a n d (S) , i = 2 n

Here, rand(S) is taken to be a random integer
from 1 to S, chosen uniformly. Notice that S = I
is the dense univariate case. We empirically in-
vestigated the number of exponent comparisons
required in the multiplication of two polynomials
with n terms and structure S. All coefl%ient
operation costs and other bookkeeping costs are
ignored, so the actual differences reported here
are larger than should be expected in practice.

Results were collected by taking the mean
over 20 trials for each value of n and S; the n
values went from 10 to 90 by steps of 20, and the
S values were 1, 4, 16, and 64. The observed
quantities were the number of exponent compari-
sons divided by n 2.

S n Altran Heap LI

10 4.69 .99 .81
30 7.30 1.00 .93
50 8.60 1.00 .96
70 9.45 1.00 .97
90 10.14 1.00 .98

10 4.83 2.44 1.39
30 7.55 3.45 1.93
50 9.02 3.68 2.19
70 9.88 3.88 2.29
90 10.52 4.07 2.38

16 10 4.74 3.45 1.97
30 7.76 5.42 3.80
50 9.05 6.33 4.83
70 9.91 7.02 5.47
90 10.60 7.57 5.94

64 10 4.88 3.94 2.20
30 7.61 6.37 5.18
50 9.20 7.53 7.46
70 9.89 8.29 9.64
90 10.68 8.94 11.33

Notice that the current Altran algorithm is
relatively insensitive to the structure parameter S;
there is roughly a 5% variation in the number of
comparisons per term as S goes from 1 to 64.
The heap ratios are always better than the Altran
ratios, and, as expected, the heap algorithm is
much better when S is small, and approaches the
Altran values as S becomes large. What is
perhaps most surprising is the strong showing of
the LI algorithm. It is the fastest algorithm
whenever either n or S is small, and does its
worst when the problems are both large and un-
structured. The LI and heap algorithms are
within a factor of 2 of each other over the range
studied, although we expect that asymptotically
the heap algorithm will be better as n and S go to
infinity. Because exponent comparison is only a
part of the total multiplication cost, in practice
the two algorithms will differ by less than this; in
fact, for a practical implementation, the small
differences shown here are likely to be
outweighed by bookkeeping costs and/or storage
requirements. However, either the heap or LI al-
gorithm algorithm appears to do a better job than
the current Altran algorithm.

Section 6: Division and Divide Test

We suppose that we are given two (sparsely
represented) polynomials,

68

C ~- Z C k X~k
k = l

and
m

B = b/x
.]=1

We ask about the existence of a (sparsely
represented) polynomial

n

A ~ Z a i xai
i = 1

with the property that

C = A B .

If there is such an A, we say B exactly divides C,
and call the operation of finding A from B and C,
or deciding that none exists, the divide test opera-
tion. If B does not exactly divide C, then under
certain circumstances it is meaningful to ask for
the remainder of the division operation after we
have removed the largest possible multiple of B.
This remainder operation will also be briefly dis-
cussed.

In order for exact division to be possible, the
leading coefficient of B must exactly divide the
leading coefficient of C, and the leading exponent
of B must be less than or equal to the leading ex-
ponent of C.

We may begin the computation by setting

al xal _~ Cl X?____~-
b 1 x fll

We can then compute

C 1 = C - a i x al B

B exactly divides C if and only if B exactly
divides C l, and C 1 has lower degree than C; thus
we can continue this process until either bl xl31
fails to exactly divide the leading term of some
C i, or some Ci becomes zero. In the first case,
exact division is impossible; in the second, exact
division is possible, and the quotient is~iven by

n

A ---- Z a i xai.
i = 1

This algorithm is similar in spirit and perfor-
mance to the multiplication algorithm which sim-
ply added n summands. We obtain an expected
worst case time which is order of n2m.

Notice that the timing for division is given in
terms of the related multiplication. It is very
difficult to get good timing bounds for divide test;
in the case where exact division is impossible, it
is hard to say at what stage this will be
discovered, while when the division succeeds, the

cost depends critically on the number of terms in
the quotient, which is a priori unknown.

There is another subtlety that should be
mentioned. When we multiply with an algorithm
which costs mnlogn or n2m, we are free to choose
n to be the smaller of m and n. When we divide,
however, we cannot choose to divide by the quo-
tient, because we don' t know it. Thus, in the
above n2m algorithm, n is the number of terms in
the quotient and m is the number of terms in the
divisor; when m is small and n is large, the divi-
sion still takes n2m, when the associated multipli-
cation could take only nm 2.

We can easily adapt the heap and list inser-
tion algorithms to carry out a divide test opera-
tion. The central idea, as with multiplication, is
to avoid large intermediate results while still gen-
erating the quotient terms one by one. The al-
gorithm builds the quotient term by term, and
carries out the multiplication of the quotient by
the divisor, and the subtraction of this product
from the dividend, simultaneously and term by
term. When there is a term in the dividend
which is not cancelled by a term in the product,
we generate from this term a new term in the
quotient. Thus, at each stage in the divide test
algorithm, we have used a certain number of
terms from the dividend, we have computed a
certain number of terms in the quotient, and we
are in the process of multiplying together the
current quotient and the divisor. To avoid
becoming lost in the details of the multiplication
algorithm, we shall assume that we have two
routines, multerm and mulexp which take care of
running the multiplication for us. mulexp tells us
the exponent of the next term to be generated by
the multiplication of the current quotient and the
divisor; if there is no next term for some reason,
this exponent is returned as -1. mulexp does no
work however, except' to "peek" at the current
state of the multiplication and examine the ex-
ponent, multerm actually computes the coefficient
of this next product term, updates the f array,
and does any other relevant bookkeeping; in
effect, multerm resembles the body of the multi-
plication algorithm given in section 3, above.
The algorithm follows:

To compute:
K

Z CkX "yk n
k ~ l ~ Z a i x O t i

m • i~l
Z b j x i
.j=l

or report that exact division is impossible. It is

69

assumed that the Yk and the/3.i are in decreasing
order, and that the c k and the b/are nonzero.

if (m = 0) return "division by zero"
n----O
k - - 1
{ Initialize Multiplication }
while (k~< K) {

8 --- mulexp ()
if (8 > 'Yk) {

e = -- multerm ()
}

else if (8 = ' y k) {

e = c k - - m u l t e r m ()
k = k + l
}

else if (8 < 'Yk) {
E = ' Y k
e = c k

k = k + l
}

i f (e ~ O) {
if (e < /31 o r b t doesn' t d i v i d e e)

return "no division"
n = n + l
a n = e/b 1
Ot n ~ E - - / 3 1
}

}
t/

if (mulexpO = --1) return ~ a i xc~i
i ~ |

else return "no division"

If desired, this algorithm can easily be
modified to deliver the remainder as well as the
quotient; instead of returning when division is
seen to be impossible, we simply continue to gen-
erate the terms ex ~ and add them to make up the
remainder, while the quotient remains un-
changed. The details are left to the reader.

Section 7: Summary
We have discussed arithmetic with sparse po-

lynomials. Addition and subtraction are simple
processes for which there are linear algorithmsb,
Multiplication of an m term polynomial by an n
term polynomial can be done asymptotically in
time mnlogn, using a heapsort. Performance can
be improved in special cases, such as the univari-
ate dense case, by modifying the heap to recog-
nize equal exponents. The list insertion algor-
ithm, although asymptotically mn 2, seems very
competit ive in practice. Roughly speaking, we

can do a divide test in about the same time as
that required to do the associated multiplication.

As far as future research is concerned, prob-
ably the major theoretical question is whether
there exists a sparse multiplication algorithm
which runs in time mn. More generally, there are
no nontrivial lower bounds on the time required
for multiplication or division. In practice, we
need to understand more about the interaction of
data structures, algorithms, computer architec-
tures, and bookkeeping. To make sensible imple-
mentation decisions, we have to try to under-
stand what problems we will be called upon to
do; how big are they, how sparse are they, and
what is their structure? Measurement and better
models appear to hold the key to improved
sparse polynomial arithmetic in the 1970's.

Acknowledgments
I am grateful to many of my colleagues at

Bell Labs for discussions and ideas which have
shaped this work; especially to W. S. Brown, M.
D. Mcllroy, A. V. Aho, A. D. Hall, and C. L.
Mallows. The preparation and editing of this pa-
per was greatly aided by software written by B.
W. Kernighan and U L. Cherry; the paper was
typeset by programs running under the UNIX
operating system.

References

1. Barton, D., Bourne, S.R., and Fitch, J.P., An
Algebra System, Computer Journal 13 (1970),
pp. 32-39

2. Knuth, D.E., The Art o f Computer Program-
ming, Vol 2, Addison-Wesley, 1969.

. Aho, A.V., Hopcroft, J.E., and Ullman, J.D.,
The Design and Complexity o f Computer Al-
gorithms, Addison-Wesley, 1974 (to appear)

4. Knuth, D.E., The Art o f Computer Program-
ming, Vol 3, Addison-Wesley, 1973.

5. Brown, W.S., et al, A L T RA N , Vols I and II
(1973) Bell Telephone Labs.

70

Appendix A: insert, remove, and heapify

procedure insert (e) {
i f (b o l e r O) {

hhote "~- e

heapify (hole)
I

else {
hsize = hsize+ 1

hhsiz e "~" e
heapify (hsize)
I

procedure remove () {
while (hole # 0) {

hhole ~- hhsiz e
hsize ~ hsize - 1
heapify (hole)
]

sethole (1)
return (h 1)
}

procedure heapify (i) {
hole = 0
j = i
while (j > 1) {

i f (h i < h//2) break
else if (hi ---hi~ 2) {

chain (3 / 2 , :)
sethole (j)
return
I

else i f (h / > hi~2) {
hi, hjn = hx2, hj
j =j12
}

}
if (i # j) return
while (2j ~< hsize) {

k ---- 2j
if (k + l ~< hsize) {

i f (hk+ l ~> h k) k - - k + l
}

if (hi > h k)re turn
else i f (by = h ~) {

chain (j , k)
sethole (k)
return
}

e l s e i f (h j < hk) {

hi, hk -- hk, hi
j - - k
}

}

procedure sethole (i) {
if (i = hsize) hsize = hsize--1
else hole ~ i
}

71

