
PROBABILISTIC ALGORITHMS
SPARSE POLYNOMIALS

Richard Zippel*

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, Mass. 02139/USA

FOR

I . Introduction.

Modular approaches [1] to algebraic algorithms, such as tlle GCD, }lave been very

useful in cases where there arc very few variables. These algorithms have, unfortunately,

an exponential worst ease behaviSr since they need as many as (d + 1) v independent

evaluat ions for a problem with v variables of degree d in each variable. The Hensel lemma

was successfully used in many GCD and factorization problems [3, 4, 7, 9, i0] when the

problems were sparse. The Hcnsel lemma approach exhibi~,s exponential behavior at "bad

zero" cases that correspond to a zero derivative in the Newton's method analogue. This

occurs when substituting zero for one or more variables destroys too much information

and reduces the corresponding .lacobian to zero. In such cases it is common to make a

l inear substitution, such as Y + 3 for Y, in order to avoid tile bad point, The substi~,ution,
however, causes a large growth in the size of the revised problem. Thus the Hensel lemma

based algorithms tend to run out of space relatively early on bad zero problems.

This paper discusses a probabilitistie technique for avoiding the exponential behavior

of the modular and Hensel algorithms. This technique's expected running time is a poly-

nomial in the number of terms. Since the results for GCD and factorization can be checked

by division, one is guaranteed to obtain the correct answer, if need be, by performing the

calculation twice. The probability of getting incorrect results can be made so low, however,

t ha t no such backtracking has been required in any of our tests so far. As expected, the

exper imental results of the algorithms verify the fact that it is exponentially faster than
any of the existing algorithms in their worst eases, and its performance is a polynomial

function of the size of the final answer in all cases. The probabilistic algorithm presen[ed

here will be a variation of the modular GCD algorit, hm. In [ii], we present a formulation

of Hensel 's lemma that is somewhat more general than the one in current use and our

probabil is t ic analogue to it. Here, we shall only present the modular algorithm. In [11] we
shall also discuss how our ideas can be used in computing determinants, resultants and

solutions of both linear and non-linear equations. Except in the latter ease, it is relat ively

diffmult to check the answers, so a smalI probability of error is possible. But as our analysis

shows, that probabili ty can be made as low as one pleases, tn [11], we also discuss the
use of our main idea in solving the "intermediate expression swell" problem in those cases

where the form of the final answer is known in advance.
* This work was supported, in part, by the United States Department of Energy under Contract Number
E(11-1)-3070 and by the National Aeronautics and Space Administration under Grant NSG 1323.

217

We should also note that Paul Wang, in his Enhanced EZ GCD algorithm [8], uses
ideas similar to those we use. Although the EEZ GCD algorithm wilt often run faster than
ours, there has becn no analysis of Wang's heuristics that indicates they arc effective in
all cases. There also seems to be empirical evidence that the EEZ GCD algorithm can
still suffer from the "bad zero" problem. Furthermore, it is not clear how to extend his
approach to problems other than GCD or factorization.

The basic idea of our probabillstic approach is as follows: We substitute randomly
chosen, large integers for all but one variable in the problem. The solution is built up by
interpolating for one variable at a time. Our main probabilistic assumption is that when
a coefficient has been determined to be zero somewhcre in the interpolation process it is
assumed to be zero everywhere. Thus, one need never eomputc more terms then therc will
actual ly be in the answer. The algorithm resorts to solving t linear equations at each level,.
where t is the number of terms at that level. Thus its cost is asymptotically cubic in the
number of terms.

2. Sparse Modular Algorithm.

All modular algorithms have basically the same form--a polynomial is interpolated
from its value at a number points. We will call this polynomial the goal p o l y n o m i a l of the
algorithm, The goal polynomial is assumed to involve v variables. Each variable appears
to no higher degree than d in the goal polynomial. Tim goal polynomial will be denoted
by P (X ~ , . . . , Xt,).

There are (d -I- 1)" independent coefficients in P. An algorithm that has no probabil-
istic aspects needs at least (d ~- 1)" "points" worth of information to determine these
coefficients. Just looking at these points requires time exponential in the number of vari-
ables. Throughout this section P is assumed to be sparse, and has t terms (~ << (d -t- 1)v).

2.1. Overview of Sparse Modular Algorithm.

The sparse modular algorithm begins by choosing a starting point for the interpolation,
(xl0,. . •, xv0). It then produces the sequence of polynomials,

P1 = P (x l , x 2 0 ,x~0),

P2 = P(x1, x~, x3o,..., x,o),
:

P~ = P(x~, x2, . . . , x,).

Note that PI is a univariatc polynomial in X 1. The coefficient of X~: in P is a polynomial
f k (X 2 , . . . , Xv). If P is sufficiently sparse there will be certain powers of)(1 that do not
appear in Pi. Assume that tile X~ term is one of those terms that is not present.. There
are two possible explanations why X~ did not appear in Pl. Either f~ is identically zero or
f k (x l o , . . . , x~.0) is equal to zero. If the ~tarting point (xl0,... , x,0) is chosen at random then
the probabil i ty that ~ (Z l O , . . . , x~o) is zero is extremely small. Thus the probability that fk

218

is identically zero is quite large. The key idea in this algorithm is to assume that X1 k does

not appear in P; i.e., fk is identically zero. Thus it is assumed that tile coeflicient of every

monomial involving X~ is known, and thai, it is zero.

This information is used to construe~ P2. The same reasoning can be applied to each

monomlal in -3(1 and X2 that does not appear in P2. Since there are at most t terms in any

of the Pi, almost all of the terms will be zero the number of coefficients that wc don ' t know

is small.

We will demonstrate this algorithm when P is a polynomial in 3 variables, P(X, Y, Z).
As usual, we assume that P is a sparse polynomial with t terms (t << (d n k- l) v, v -~- 3).

Whenever we say "pick xi" we will mean pick an integer xl randomly from a set :f that has

at least B distinct elements.* Pick Y0 and z0 randomly. We now pick x0 , . . . , xd and examine

the values of P at the points (xi, N,z0). These may be interpolated to glve a univar ia te
polynomial in X, namely P(X, Yo, zo). So far nothing probabilistie has entered the algori thm.

We now assume that, if some power of X had a zero coefficient in P(X, N, zo) it will

have a zero coefficient, in P(X, Y, Z). Pick a yr. From P(X, ~, zo) we know that a number

of the coefficients of P(X, yl, zo) are zero. The only coefficients that need to be deter-

mined are the non-zero ones. There can be no more than t of these unknown coefficients.

They can be determined by solving a system of linear equations. Only the values of

P(xo, Yi, zo),..., P(xt, Yb ~) will be needed to set up this system of equations.

This procedure may be repeated until we have determined the sequence of polynomials

P(X, Yo, zo),..., P(X, ya, zo). Pick a monomial in X which appears in each of these polyno-

mials. For simplicity we will assume that it is the linear term. The linear term (in X) of

P(X, Y, zo) is a polynomial in Y of degree at most d. Call this polynomial f(Y). From the

d n t- 1 polynomials we have computed we can determine the values of f(Y) at N , . . . , yd.

Again using the usual interpolation methods we can dot.ermine f(Y) from this information.

Doing this with all the coefficients of the P(X,y~,z~) we can degermine P(X, Y, zo).
Now that we have P(X, Y, z0), it is only natural to try to compute P(X, Y, zt) for a new

Zl. This can be done in a manner almost identical with that used earlier. We know tha t

the monomials which appear in P(X, Y,z~) will have non-zero coefficients in P(X, Y,Z).
We assume that none of the XiY ~ monomials in P are missing. There are at most t of

these monomials, and thus at most) unknown eoeNeients to be determined. Picking t pairs

of values (xl, Yl) , . . , , (x~, y~) and computing P(:c~,yi,zl) we can set up a system of linear

equations in the unknown coefIicients. Solving this system we have P(X, Y, zl). Repeat ing

this procedure we will finally determine P(X, Y, ze). By repeating the standard interpolation

scheme we wiI1 finally arrive at P(X, Y,Z).
There are two essentially different types of interpolation going on in this algori thm.

The first time we try to generate a polynomial in X, it is not known what its s t ructure
is and thus the interpolation is preformed as if the polynomial were dense. This we call a

dense interpolation. (Actually the polynomial in X can be read off from its values using the
Lagrange interpolation formula, but. this gives only a slight increase in efficiency.) Now a

"The set Y is usually chosen to be the interval [O,B -- l]. Thoughout this section lower case symbols will
denote integers chosen at random while uppercase symbols will be reserved for variables.

219

number of sparse interpolations are done [or different values of Y to get more polynomials
in X. The coefficients arc then combined via a dense interpolation to give polynomials

in Y. The algorithm proceeds in this manner. The first polynomial produced involving
a particular variable is done via a dense interpolation. The structure determined by the
dcnsc interpolation is then used to produce a skeleton for the polynomial. This skeleton is
used as the basis for a scries of sparse interpolations which arc done to set up the points
for a new variable.

2.2. General Formalism of Sparse Modular Algorithm.

In this section wc will present a precise form of the sparse modular algorithm that
will also aid in the analysis of the algorithm. Algorithm D makes no assumptions about
the sparsity of the goal polynomial. It uses the Chinese remainder algorithm to produce a
univariatc polynomial over a field. This is the dcl~sc lifting stage mentioned in the previous
section.

Algorithm D. Given two sets of rational integers {Pl, .- . , P~ } and { m l , . . . , mk }, it returns
a polynomial f (x) such that f(p~) = mi for I <~ i < k.

D L [Initialize] Set f (x) ~ ml , q(x) ~- (x - -P l) .

D2. ['Loop] For i ~ 2 , . . . , k do step D3.

D3. [Determine new]1 Set f (x) * - - - f (x) + q (p i) - l q (x) (m i - - f (p i)) and q(x) ~ (x - - p i) q (x) .

D4. [E,d] aeturn f(,).

It is important to note that even if the goal polynomial for algorithm Di s very sparse
the intermediate results can be completely dense. The full sparse modular algorithm alter-
nates between stages of dense interpolations using algorithm D abovc, and stages of sparse
interpolation in algorithm S below.

The sparse interpolation algorithm needs a data structure to indicate which terms are
known to bc zero. Since there are fewer terms which are likely to have nonzero coefficients
than terms with zero coefficients, we will keep track of the nonzero terms. A monomial of
the form X~ ~.. .X~ v will bc reprcscuted by the v4uple (c~,..., eo). A skeletal po l ynomia l S ,

is understood to be a scl: v4uplcs where each element of S represents a nonzero term in
the goal polynomial.

After a skeletal polynomial is produced we will want to determine what its coefficients
arc. This will be done by solving a system of linear equations. To simplify the notation
a bit wc will adopt the following convcntion. Assume a skeletal polynomi~tl S contains
t terms. We "will assume that each skeletal polynomial has associated with it t symbols
which will represent the cocfflcicnts of the monomials given by S. Denote these symbols by
s j , . . . , st where the subscript, i, is associated with the exponent vector (c/ t , . . . , civ). Then
wc define

sla 1 a v --}- s2a I a v • , . . 2 U sta~t,...a~tV

The sparse modular algorithm can bc specified as follows.

220

Algorithm S takes a set of variables { X1, •. •, X~, }, a degree bound d, a function F (X b . . . , Xv)
and a starting point (a i , . . . , a ,) as arguments. It is assumed that the values F returns
are the v,~tues of some polynomial of at most v variables and of degree at most d in each
variable. The starting point is assumed to be a good stating point. The algorithm returns

a polynonfial P(X1 ,X ,) , Where each variable occurs to degree no more than d and
P (b i , . . . , b~) = F (b l , . . . , b~) for all integers b,.

S L [hitiali~e] Se~ S ~- { (0) } and p0 ~- ~0.

$2. [Loop over variables] For i = 1 thru v do $3 thru 88.

S3. [Iterate d times] For j = 1 thru d do 84 thru $7.

$4. [Initial linear equations] Pick rj, set L to the empty list, set t to the length of S.

$5. [Iterate ~ times] For k ~- 1 thru t do $6.

S6. [Set up liner equations] Pick a random (i--1)-tuple hk, and add the the linear equation

S(Ak) ---~ V(ak, r i, a j + l , . . . , av)..,

87. [Solve] Solve the system of equations L and merge the solution with S to produce a

polynomial pa(XI, . . . , X i -1) .

$8. [Introduce Xi] For each monomial in S pass the corresponding coefficients from
p0 , . . . , pd and a,, r l , . . . , U to algorithm D. This will produce t polynomials which can
bc merged with S. Set P0 to this new polynomial and S to its skeletal polynomial.

$9. [Done] Return Po-

There is one point at which caution should bc exercised in implementating this pro-
cedure. The first time through the i loop the linear equations which are set up will bc
trivial since there is only one unknown. There is a chance that the linear equations that
are developed will not be independent. If this happens then it is necessary to run stcp $6

until sul'Iiciently ma.ny independent equations are produced.

3. Analysis and Timings.

Probabilistic algorithms are rather new in algebraic manipulation. O~her probabilistic

algorithms are discussed in [5,6]. In this section we first define wha~ is meant by a "good
starting point." The probability that a random point is good is then determined. This
probability is very small and can easily be made even smaller. Then the running time of the
algorithms of section 2 are analyzed. Finally a number of sample problems are presented to
compare the analysis~ the actual running time and the running tiine of several competing

algorithm including the EZGCD algorithm.

3.1. Good and Bad Point.s.

Assume the goal poty~mmial is P (X I , . . . , X~) and the starting point is a ~ (a b . . . , av).
The polynomials which are produced by the sequence of dense iterations is

p (x l , a2 , a,,), p (x l , x2, an , . . . , a ,) , . . . , P(X~, x 2 , . . . , x ,) .

221

The entire algorithm depends upon the accuracy of the skeletal polynomials. The skeletal

polynomials are extracted from the structure of the polynomials in this sequence. Thus it is

impor tan t to know if P(XI, a2,..., av) has too few terms. This will happen if the coefficient

of some X~ in P(Xb. . . , ~) is zero at a. Lct Fl be the product of the nonzero coefficients

of X1 ~ in P for k ~--- 1 thru d. If E is not a zero of FI then the second skeletal polynomial
will be computed correctly.

Similarly if the coefficient of some monomial in)(i and)(2 is zero at : the second skeletal

polynomial will be erroneous. Define F2 to be the product of the coefficients of nonzero

monomials in X: and X2 and define Fa ,Fv-1 similarly. The auxNiary polynomial for

P is defined to b e F =FtF2.. "Fv->F is a polynomial in X2,.. . , .k~. The key assumption

throughout this section is that our initial eva]uation point is not a zero of this polynomial. A

point a t which F is non-zero is called a good poinL F is the auxiliary polynomial which was

mentioned earlier. Since all bad points satisfy F = 0 they form a variety of codimension

1. Thus almost all points in affine v - - 1 space are good.

Each of the Fj is the product of no more than t polynomials. Thus the degree of Xi
in Fj is bounded by dt and in F by dvt. The following theorem gives the probabil i ty tha t
a point chosen from a set of a given size will be bad for a polynomial of degreeD in v variables.

Theorem I . Let f @ Z[XI,... , ~] and the degree o f f in Xi be bounded by D. Let N,(B)
be the number of zeroes off, (z~,..., z,,) such ~hat xi E 3 (a set with B elements~ B >> D).
Then (B--D)

Proof: There are at most D values of x~ which zero f identically. So for any of the D

values of x , and any value for the other xi, f is zero. This comes to DB v-1. For all o ther

B - - D values of xv we have a polynomial in v - - 1 variables. The polynomial can have no

more than 74,-1(t3) zeroes. Therefore,

NdB) _< DS'-: + (B- D)N._:(B).

L e t Nv = (t3 --D)V-lfv. The resulting equation is easily solved and the theorem follows
direct ly .

This bound is actually attained by the polynomial

D D

:(:,,-. -, :o) = (:: - O.
i~l i~l

This polynomial is dense in att of its variables. One would expect a much tighter bound
to hold for sparse polynomials.

Each of the Fi is ~,he product of, at most, t terms and each term is of degree, a t most,
d. There are v - - 1 of these polynomials, so the maximum possible degree o f f is (v - - 1)~d.

There are only v - - 1 variables in Y. There areB v points in the set 5' X " " X 5". Applying

222

the theorem to F the probability that a point chosen at random will be a zero of F is

N~_t(B) = B ~'-I -- (B --D) ~'-1

< v(v-- 1)td v2td
- z < - B

At worst the number of terms in the goal polynomial will be (d "t- 1) v. So a worst case
bound for the probability that a point will be a zero of F, and thus a bad point is

,2d(~ + 1)"
B

If we wanted to makc the probability of choosing a bad point be at most 10 - a ° we
would have

B >_> i03°v2(d + 1) v+I

logB ~_ 69 + 2 log v + (v + 1)log(d -[- 1).

Notice that the size of the numbers which arc used is about v log d. Thus each arith-
metic operation will take polynomial time, Since there are only a polynomial number of
arithmetic operations the algorithm's expected running time is polynomial,

3.2. Analysis.

Throughout this section we will assume that all arithmetic can be done in unit time,
the goat polynomial involves v variables and no variable appears to degree more than d
in the goal polynomial.

Wc will make a number of crude assumptions in analyzing Algorithm S. We assume
tha t cost of evaluating F is constant and requires C arithmetic operations, We will also
assume that the number of terms of P(Xb a2,..., ao) is t h of P(Xh)(2, a3,..., av) is ~2 and
so on; tv is equal to t.

Each monomial contained in S is a product of i - - 1 terms, and cach term is exponen-
tinted to degree, at most, d. Evaluation of a monomial will thus cost (i - - 1) log d operations.

There are no more than t i - i terms in S, so step $6 will take about C + (i - - 1)ti-1 logd
operations. Step $6 will be iterated ti-1 times to produce the each set of lincar equations.
Thus i~ will cost Ct i - i + (i - t)i~_llogd operations to produce the system of linear

equations.
There will be t~--i independent linear equations to be solved, Using straight forward

algorithms this will take about c l ~ - i operations. Steps $5 thru $7 will be executed d times
for each variable so it will cost

223

opera t ions to produce the polynomials, P l , . . . , Ptl_ ~.
There will be t i - i germs in each of these polynomials, so algorithm D will be run ti--1

t imes. Each invocation of algorithm D will require about c2d 2 operations. Adding this mess

up and summing from i = 1 thru v we get

t~

i = l

We need to make some assumptions about the structure of ti to get anything mean-

ingful out of this. We will assume that the ratio of terms t i / t i - i is a constant, k. Doing

this we get,

k 3u t 3 dlogdt~ [k2U-k7 " ~-- ~ I ~ - - ~ o + ~-r;~L i (v--1)--v)+k2]-l-c2d2tk(k__11;;°

Despi te appearances to the contrary this expression is not exponential in v. Remember

tha t kVto --~ t. There are two special cases of this formula that are of interest. If k is large
when compared with 1, we can ignore the small terms involving k and get

~3 ~2 t
cld~ + e log d,~ + ~2p

If k is very close to 1, then to = t and we get

q dv~a 4- dv2t2 log d "4- c2 d2vt.

In both of these cases the dominant behavior is O(t3), assuming t >> d or v. This is clearly

not exponential in the number of variables (unless t is) which is unlike any other modular

algori thm.

3.3. Timings.

Here we present a few sample timings and compare them with our estimates from the

previous section. A more detailed analysis and further examples are contained in [11].

The first, example was chosen to show the sparse modular GCD allzorithm at its best.

Nine monomials were chosen at random and combined to produce three polynomials with 3

terms each. One was multiplied by the other two to give two polynomial of 9 terms. These

two polynomials were used as the input to the GCD routines. The number of variables

ranged up to i0 and the degree of each variable was less than 3. The following table gives

the computat ion times for tile EZGCD algorithm, the Modular algorithm, the Reduced

algori thm, Wang's new EEZGCD alg~rlthm and finally the Sparse Modular algorithm.
These timings were done on a DEC KL-10 using MACS~MA [2]. The polynomials used are

224

contained in the appendix. Tile asterisks indicate that the machine ran out of space.

v EZ Modular Reduccd EEZ Sparse Mod

t .036 .047 .047 .036 .040

2 .277 .275 .216 .377 .160

3 .431 .920 .478 .522 .381

4 1.288 7.595 2.027 .742 .842

5 3.128 65.280 , 1.607 1.825

6 * 483.700 , 1.897 3.364

7 , 2409.327 , 1.715 4.190

t 8 * * *) ___* 4.534

9 * * , * 4.006

10 * * * * 8.202

As expected the modular algorithm ran in exponential time. Both tile EZ and the

Reduced algorithms ran out of storage. This example was carefully designed so tha t all

the G C D ' s were bad zero problems for the EZ algorithm. When thcse problems were run a

LISP machine with 30 million words of address space the exponential behavior of the EZ

algor i thm was evident.

4. Conclusions.

In this paper we have tried to demonstrate how sparse techniques can bc used to incrcase

the effectiveness of the modular algorithms of Brown and Collins. These techniques can

be used for an extremely wide class of problems and can applied to a number of diffcrcnt

a lgori thms including ttenseI's lemma. We believe this work has finally laid to rest the bad

zero problem.
Much of the work here is the direct result of discussion with Barry Trager and Joel

Moses whose help we wish to acknowledge.

5. Appendix.

This appendix lists the polynomials that were used to test the various GCD algori thms

in scction 3. The di polynomials are the GCDs which are computed, the 1~ and gi the
cofactors. The polynomials that were fed to the various GCD routines were dill and dig~.

d~ = z~ + zl + 3

= + + d + 1
2 2--X2 x) ~2=xlz2-t- 1 ~ x l z 2 + z ~ + z l

225

XI~ 2

d4 ~ - - - 2:13; 4 -~ X2X3X4 . XlX2X4 "~- X2Z4

'4 - x -~x 2 ~ ~ ~ x~ + xix3x4

2 2 2 2

XlX22:3Z42;5 ~ XlX2Z 5 -~- Xl:V3Z4Z 5 XlZ2X3Z 4

@ XlX2Z3Z4XsX, 52[_ XlZ3X6 .~ ZIX2X3X4~:SZ 6 @ ZIZ3XSZ{]
2 2 2+XlX3X2X~+ 2 2 2 2 2 2 f~ = x~x,~x4zsx ~ xix2x ~ --~ xlx2x~xsx~ -~ xix~x4x5
2 2 2 2 2 2 r, XlX22Z3X24X 5 2 2 ~ x2x~X~XsX~ + x~x4xsx~ + x2zax~z~x~ + + x~x3z5

2.,/;,2 2 2 2 , 2T2 2 2 2 2 2 ~X3X4X2
d7 = ~'lX2 .,4zOx7 ~ Xl~,3X4X 6. 7 @ X3X4X7 "J- XlX2X4X9

Z t Z2Z3Z4 ZvZ5

-~- .~- X2Z3X4X5:~Z 7 -'~ Z4X(~X 7 --~ XlX2X3XsXoX 7 -~- XlX3Z4Z 5

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
d 8 ~ x2x4z5xoz7x 8 ~ xt:~2x3x4x6x7x8 --~ xlx3x4xsx 7 --~ xlx2x3x4x5z6x7 ~ x2x4x~

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 .2 2 2 2 2
f8 ~ .TlX2.T3Z4XSX6X8 -~ x2x5xsz8 ~ XlX2X3z4;~Sx73:'8 21- XlX3XdZ'5X7X8 "3[- ZlX2'T3X5:~7

..~ ZlX,2Z4Z5XsX 8 ~_ X.lX2X3x4x6x 8 ~ XlZ2X3X4Z5X82f- ZIX2XdZ5

d,.) ~ 3 2 z~z2z3z~z~zsz .~ ~ . 3 2 2 ~ ~ 2 . 2 XlZ3X4Xt3XsZ 9 -~ , -@ x2z3~,4z5x3z 9 -j- ZlX3X4z5xox7x8 -J- x2X3XdX5XBx7x 8
2 2

2 2 2 2 2 ,r 2 2 22, . 2 2 2 2 2 2 2
g9 ~--- XlX,23;dx5XOZTZSX 9 ~ XlX2X3~5.~:6X7:r, Sx9 ~ xlX3x4XOZTX&'r,9 "@ Xl~:2X4}~ 8 ~ X2~:dX52:6X7

2 2 2 2 2 2 2 2 2~.2 2 2 2,2 2 x2x _ x2_2
d l o ~ xlx2x4zsx9ZloJvX2x4x5x~zTzgxlo-~-xlx2~xs-7x9"JcXlX3X4XTXg"@ 1 3x4 7~8
~ 0 2 , 2 2 2 2 2 2 . 2 .2,2 , . . 22

~t~2x3z4x~7~8~9ZlO2i-z2z3z4zfi29XlO ~- XI~,2X3X4~5~.GX7~sXgXlO
2 x 2 2 .22 2 2

-~-ZI,,2X4~SXSXgZIO'-~-X3~4~SZSXTXgXlO
2 2 2 2 2 2 .22 2 2 2 2

glO~XlX2X3x5x6XTXSXgXlo2t - xlz2~z4zszoxszozlo
2 . 2 2 2

"~ -X lX3~XlO-~X4X5X6X7X 9

226

~EFERENCES

I. S. t3rown, "On Euclid's Algorithm and the Computatioa of Polynomial Greatest Divisors," J. A CM
IS, 4 (1971), 478-504.

2. MATIILAB Group, MACSYMA Reference Manual--version 9~ Laboratory for Computer Science,
Massachusebts Institute of Technolo~zy, (1978).

3. J. Moses and D. Y. Y. Yun, "The]3ZGCD a]gorithm," ProceedingsofACM Nat. Con/'. (1973), 159-168,
4. D. R, Musser, "Multivariate Polynomial Factoring," J. ACM 22, 2 (1975), 291-308.
5. M. O. Rabin, "Probabilistic Algorithms," Algorithms and Complexity--New Directions and Recent

Resut~s (d. F. Traub Ed.), Acad. Press, New York, (I976), 21-39.
6. Ft. Solovay and V. St, rassen, "A Past Monte-Carlo Te~l, for Primality," SIAM J. of Comp. @, i (1977).
1. P. S.-H. Wa~g and L. P,]]othschild, "Fad, oring Multivariate Polynomials over the Integers," Math.

Comp. 29, (1975), 935-950.
8, P. S.-1I. \Van~,, ~An Improved Multivariat, e Polynomial Fac~orinK AlI~orithm," Ma~h. Comp. 32,

(1978), 12t5-1231.
9, D. Y. Y. Yun, The t/ensel Lemma in Algebraic Manipulation, Ph.D. thesis, Massachusetts Institute

of Technology, (t974).
10, tI. Za~6cnhaus, ~On Hensei Factorizat, ioa I," J. Number Theory 1, (lg09), 291-311.
11. R. E. Zippel, Probabilis~ic Algorithms for Sparse Polynomials, Ph.D. thesis, Massachusetts Insti tute

of Technolo~..y, (1979).

