A Deterministic Algorithm For Sparse Multivariate Polynomial Interpolation

(Extended Abstract)

Michacl Ben-Or
Hcbrew University
Jerusalem, lsracl

Prasoon Tiwari

[. B. M. Thomas J. Watson Rescarch Center
Yorktown Heights, NY 10598

Abstract: An cfficient deterministic polynomial time al-

gorithm is developed for the sparse polynomiat interpo-

lation problem. The number of cvaluations nceded by

this algorithm is very small. The algorithm also has a

simple NC implementation.

1. Introduction

In this paper, we consider the following scenario.

We are given a black-box which contains a multivariate

polynomial P{xy,, x,;) with real (or complex) cocffi-

cients.

B Baens)

Plxy, v, 1))

PBy P)

—

Fhe black-box takes as input an #-tuple (#y, f1,) and

outputs the value P(fy. ...,). We are also told that

P(xysvy) has at most £ nonzero coefticients (e, itis

sparse). Given this information, we must determine all

the coefficients of the polynomial. This is the classical

sparse multivariate polynomial interpolation problem.

Efficient algorithms are known for this problem

which use randomization. Until recently, no

deterministic polynomial time algorithm was known for

this problem. A polynomial time algorithm for this

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery, To
copy otherwise, or to republish, requires a fee and/or speclic
permission,

© 1988 ACM-0-89791-264-0/88/0005/0301 $1.50

301

problem was given by Tiwari (1987b). In this paper, we
present an efficient deterministic polynomial time algo-
rithm for this problem which improves the algorithm duc
to Tiwari (1987b). The running time of our algorithm is
polynomial in the length of the output and this algorithm
has an NC iriplementation. The main ingredicnts of our
deterministic algorithm are: (i) a decoding algorithm for
BCH codes (sce, for example, Blahut, 1984), (ii) a novel
technique of substituting distinct primes for various var-
iables due to Grigoriev and Karpinski (1987), and (ii)
an efficient algorithm for finding roots of polynomials
which have only integer roots (Loos, 1983; Pan and Ricf,
1987).

To the best of our knowledge, the best previously
known algorithm for this problem is due to Zippel (1979)
{scc Kaltofen, 1986, for a related algorithm). The fol-
lowing table comparces this algorithm to our new algo-
rithm. Here ¢ is an upper bound on the number of
monomials, 4 is an upper bound on the degree of any
variable, n is the number of variables, and ¢ is the prob-
ability of failure. The number of operations is counted
on an algebraic RAM.

Our algorithm has a simple NC implementation.
This is in contrast to the fact that Zippel’s probabilistic
algorithm, which performs interpolation variable by var-
iable, is inherently sequential and requires n sequential
phases for completion. Our results immediately imply
the following recent results: (i) the result of Grigoriev

and Karpinsky (1987) that if the number of perfect

Parameter Zippel's Algorithm. | Our Algorithm
Type of Algorithm Probabilistic Deterministic

. 3 2 2
Number of Operations ndt t*(log"t + log nd)
Number of Evaluations ndt 2t
Sizc of Evaluation Points in bits log(ﬁd—t tlogn
Parallelizable No Yes

matchings in a graph is polynomially bounded, then they
can all be determined in NC; and (i) a generalization
duc to Tiwari (1987a) that if the number of full-
dimensional solutions of a linecar matroid parity is
pelynomially bounded, then they can all be determined
in NC. Morcovcer, the total number of evaluations per-
formed by our algorithm is lincar (exactly 2¢), compared
to at least quadratic cvaluations in the above mentioned
results, where ¢ is the number of perfect matchings (or
the full-dimensional solutions). If P(xy, x3, ..., x,) has
integer coefficients, then we could talk of the the bit
complexity of our algorithm. In this case, the bit com-
plexity of our algorithm is polynomially bounded. Our
algorithm does not require a priori knowledge of the de-
gree d.

We also prove that thc number of evaluations can
not be reduccd below 2¢ for a large class of interpolation

algorithms, and our algorithm is in this class.

Our algorithm also sheds light on an old problem
refated to a problem of Edmonds (1967) (sce also Lovazs
1979). Supposc A is an n x n matrix, cach of vhose cn-
trics is a multivariate polynomial. Is it possible to check
cfficiently whether det(4) = 0? Even if an upper bound
t on the number of monomials occurring in det(4) is
known, no polynomial {(in) time algorithm is known for
determining the coefficients of det(A4). The obvious al-
gorithm of evaluating the dcterminant may fail because
some intermediate polynomials may be very dense. Our
results provide a polynomial time algorithm to solve this
last problem. In contrast, the problem of determining
the number of terms in a multivariate polynomial which
is given as the determinant of a matrix is known to be
{{P-Complete (Kaltofen 1986).

302

Another surprising result, discussed in Scction &, is
as follows: Given a black-box containing a polynomial
P(x) in # variables with all coefficients positive, there is
a poly(n, t, d)-time algorithm for determining P(x) where
d, and ¢t arc the (unknown) degree, and the (unknown)
number of monomials appearing in P(x). We also pres-
cnt a collection of interpolation problems whose com-
plexity is open. For more recent work on related
problems, also sce Kaltofen and Trager (1987), and
Zippcl (1988).

2.Definitions and Notations

t
Let P(xy, Xo,..s Xp) = 2 @M {X,..., x,), Where
aj

A[,:xl
in P(xy, x3,..., X,), and € Z ,a;e C. Wesay that

oap, =1, . .
..X,", are the ¢ d&tinct monomials appearing

P(xy, x9,..., X,;) is a ¢ -sparsc multivariate polynomial.
Let k be the exact number of nonzero coefficients in
P(x|, X3...., x,). Given a biack-box, the bound r such
that kK < ¢, and the number of variables n, the sparsc in-
terpolation problem is to determine a; # 0 and ay for
P=1,2, ...k, =1,..n Wewill also write

Plxp, Xgaee, X)) as P(x).

We will denote the i-th prime integer by p;. We
cvaluate the polynomial P(x) at the 2t points given by
u;= (p;,pé,....p,',) yfori=20,1,2,...2t — 1. Letv;= P(u).

Qur modcl of computation is an algebraic RAM.
In one step, the processor can access any memory fo-
cation or exccute a |-, -, X, or [operation on two real
numbers stored in its registers. {n our algorithm, we will
also need to compute @ mod & where a and b arc inte-
gers. We assume that this operation takes only one step.
This can be done if rounding is permitted as one in-

struction on the RAM.

3. The Algorithm

In this scction, we will consider the casc Ak =¢ . The
case k < t will be resolved in the next section. Our aim

is to reconstruct P(x) using only the 2/ numbers v,

x

Letm; M), where Af(v ... x,) AP

n M is
the i-th monomial appearing in P(x(, X5,..., v,). The fol-
lowing important observation is duc to Grigoriev and
Karpinski (1986). Qur algorithm relics heavily on this
observation:

Observation: 12; # mj for i # j.

The algorithm can be partitioned into two phases.
In the first phase, we determine the exponents i s and
then in the second phase we determine the coefficients
a;. In the following paragraph, we first describe a
method to determine the coefficients, given the expo-

nents. This is the easy sccond phase of the algorithm.

Let M be the ¢ x ¢ matrix defined by (M); = (m)""
Define a and v to be ¢ long column vectors whose i-th
components are q; and v;_, respectively. Then, the lincar
system Ma = v can be solved to determine a because, by
the above observation, M is a nonsingular Vandermonde

matnix.

In the rest of this section, we describe the first phase
of our alporithm where we find all the required expo-
nents. This is based on a technique for decoding BCH
codes (see, for example, Blahut, 1984). In order to de-
termine the exponents involved in the i -th monomial
M(x1, Xgp, x,) = XLy 2. x 7, we determine

m;=pyps2...py™ and factor it into prime powers.

In order to determine the m;s, we define a

‘
[.
polynomial A(z) = [T(z —m) = 2 Az’ A, =1. We will
i—=1 i=0
show how to determine the coetficients of this

polynomial by solving a lincar system. Oncee the coefTi-
cients are known, we can determining all the m ’s by
determining all the roots of A@:) . The lincar system for

determining 4;'s is derived below. Observe that:

303

i

1
0 [agmiA(2)],- mi

I {41 I+
= (Ii[/l()l'ﬂi + /{]I’Hi + ...+ /ltITl,- jl

Summing this over all i, we get

!

0 - Zu/n,-//\(m,-)

i1
t

' t
Al ! Al [l Y 4t
h,Zu,m,- + JIZa,m,-' o A2 am
i=1 i

=1 i=1

i

/l“V{ + /{IV1+1 + ..

This last equation gives us the lincar relation we want in

+ A et + Ay

order to determine the coefficients 1, Let V be the ¢ x ¢
matrix defined by (V); = v, ; . Define 2 and s to
be ¢ -long column vectors with the i-th component given
by A;_ and v,;_; , respectively. Then, by the above
equations, V 4 = — s. Since V is a nonsingular matrix
(sce the next scction), this system can be solved for the

coefficients A, ’s.

4. The Case k < ¢

The analysis in the fast scction was restricted to the
case when k =, i.c., the number of nonzero cocfficients
in P(x) is exactly equal o ¢. In this scction, we extend
the analysis to the case when k < ¢, i.e., ¢ is only an upper
bound on the numbecr of nonzero cocfficicnts in P(x).
The following lemma is the main tool in this analysis.
Let V be the £ x ¢ matrix defined in the last section by
(V),-j = Viyj—2- Let V,be the square matrix consisting of
the first / rows and columns of V .
Theorem: If k is the exact number of monomials appear-
ing in P(x), then (i)

det(V) = Z

Sc(1,2, .., k), bS] =t
for I < Je; and (i) det(Vy) = 0, for I >k .

e, [] m—myh.

€S i>j, ijeS

Proof: Obscrve that VY can be written as follows:

[[R r T mygomfomf)
a 3 .0
mgomy ..omy 0 a0 L my m} ... m!
[£ .
mt m¢ .. mp 2 1 omy mg ... mit
0 0.0
O
e e 00 . .
mi~t kel omf) W Loy mp .omp

Clearly, det(V) is a polynomial in @y, @y, ..., @z Let us
denote this polynomial by Q(ay, ay,..., @) . We will prove
part (i) of the theorem by determining the cocfTicicnts of
various monomials in (ay, aa, ..., ag):

(a) Let us determine Q(ay, @y, ..., 45, 0,0, ..., 0) where

r < [. Observe that if only the first r < [@; s are nonzcro,
then rank(V) = r </, and therefore

Q(ay, -4, 0,0, ...,0) = 0. Hence, Q(a} docs not contain
any monomial with less than / variables.

(b) By a straight forward determinant evaluation, the
total degree of each monomial in Q(a) is exactly /. This
fact, together with (a) above implics that any monomial
occurring in Q(a) is of the form []a; where
Se{l,2, .n k), and |5] =1, =5

(¢} In order to evaluate the cocfficient of []a;, sct

a;= 1, for i e §, and g; = O otherwise. Th'gislw we sce that
this coefficient is infact the square of the determinant of
a Vandermonde matrix.

The above argument also implies part (ii) of the theorem,

Corollary: (1 the number of nonzero coefficients in (x)
is bounded by r, then the number of nonzero cocfficients

max

in P(x) cquals
v; is nonsingular, j<t

The complete algorithm is given in Figurc 1 below. fts
correctness follows form the above corollary. In order to
complete the description of our algorithm, we include an

algorithm for finding intcger roots.

5. An Algorithm for Finding Integer Roots

In Figure 2, we present an algorithm (Loos, 1983)
for finding integer roots of polynomials with integer co-
efficients. We will need the complexity of this algorithm
in order to estimate the complexity of the algorithm given

in Figure [.

Sparse Polynomial Interpolation Algorithm

Input: A black-box containing a t-sparsc polynomial in n variables.

Output. All the monomials appearing in P(x), and their cocfficients.

Algorithm:

Step I: Evaluate the polynomial at points u; = (Zi, 3i,...,p,i,), fori=0,1,2,..,2¢t—1.

Let v; be its value at ;.

Step 2: Let k be the rank of the ¢ x ¢ matrix V defined by (V); = v,).
Step 3: Solve V A=s, where (V)ij =¥y (A=A, and (s); = vi 4y -

Step 4: Determine the roots my,, my of the polynomial A(z) = x* +

=1

i

A,iz .
i=()

o 0] 4 % a;,
Step 5: Factor m; — 2713 '2.../7“”' to determine the monomials present the given polynomial.

Srep 6: Solve Ma = v to determinge the coefTicients of the given polynomial, where (M),-,- o)

(a); =a;, and (v); -v; 4.

%2

4
Step 7: Quiput the polynomial Y apcy?lcy2xp™ .

i=1

l
P

Figure 1.

304

Integer Root Finding Algorithm

Input: A monic polynomial a(z) e Z[z], dega(z) = t, whose roots arc bounded by B in absolute value.

Qutput: The set of all integer roots of a(z).
Algorithm:

Step I Evaluate the discriminant A of the given polynomial a(z).
Step 2: Find the smallest prime p such that p does not divide A.

Step 3: By exhaustive scarch, find all roots of a(z) mod p. Let S be the set of roots of a(z) mod p.

Step 4: Let S =S, and compute the sct

9

21' o+l 5 -1 5 S
Sip1={le+p"b)modp” laeS,u=a@)p”,v=(a'(®)” modp”, b, =—uvmod p”) , where &’(2) is

the derivative of a(z). .
{

Step 5: Find the smallest i such that pz is larger than B, and output the sct of all intcger roots of a(z) from

the sct S;.

Figure 2.

[ct us briefly discuss the complexity of the algo-
rithm presented in Figure 2. If a(z) has degree ¢, then

2
A< BO(I) , and it can be computed in O(t3) steps. Since

the product of primes less than /is at least eﬂ(f)
find a prime p which is at most O(t2 log B). Observe that
|S;l <. Computing S, takes O(ps) steps. Computing
Siy1 from S; takes O(] ;| (¢ + log p +) steps. Therec-
fore, the number of steps taken by this algorithm on an
algebraic RAM is O(I3 log B).

, We can

6. The Number of Steps Taken by the Algorithm on the
Algebraic RAM

First we anatyze the algorithm as presented in Fig-
ure I, and then we indicate how to improve the com-
plexity. The rank in Step 2 can be determined in O(ts)
steps. The resulting system can be solved in Step 3 in
O(t3) steps. In Step 4, each root of A(z) is at most
20(d" log "), therefore B < 20(d" log)
all roots of A(z), can be found in O(t dn log n). The lin-
car system in Step 6 can be solved in 0(!3) steps.

. As a consequence,

Therefore, the whole algorithm takes no more than
0(13dn log n) steps.

In the above analysis, we have used the straight
forward algorithms for determining the rank, and solving

305

the lincar systems. Steps 2, 3, 4, and 6 determine the
complexity of the above algorithm. The complexity of
these steps can be reduced by using specialized algo-
rithms, Steps 2 and 3 can be performed in ()(tz) arith-
metic operations by using Berlckamp-Massey algorithm
(Blahut, 1984). Root finding in Stcp 4 can bc accom-
plished in O(tz(logzt + log nd)) arithmetic steps using the
algorithm of Pan and Rief (1987). If implemented in this
way, our algorithm for sparse multivariatc polynomial
interpolation takes no more that 0((2(logzt + log nd))
steps on an algebraic RAM.

7. A Tight Lower Bound on the Number of Evaluations

A nonadaptive interpolation algorithm is an in-
terpolation algorithm which selects the points of evalu-
ations depending only on the given bound, ¢, on the
number of monomials. In contrast, an adaptive algo-
rithm may evaluate the polynomial at some points and
then choose the next evaluation point depending upon
the values attained by the polynomial at previous points.
In this section, we prove that any nonadaptive algorithm
for sparse polynomial interpolation must perform 2¢
evaluations in the worst case. Observe that our algo-
rithm, which is nonadaptive, matches this lower bound.

In fact, this bound holds even for univariate
polynomials.

Theorem : Any nonadaptive polynomial interpolation al-
gorithm which dctermines a t-sparsc polynomial in n
variables must perform at least 2¢ cvaluations.

Proof ;: Consider the univariatc case. Supposc the in-
terpoiation aigorithm cvaiuaie the given i-sparse
polynomial at / < 2t1points uy, uy,..., 4y . Construct the
polynom[ial p_(x) = [1(x —u;) . Observe that

p(x)= 3 aix' has z;l=nlmst {+ 1 nonzero coefficients. De-
i=0

Lijad

. I ,
fine py(x) = % ax',and py(x)=— 3 ax' By

L2 +1
definition, p(x) = pi(x) — ps(x) , and p{x) is t-sparsc.

However, p(u)) = py(uj), for i=1,2,...,] . =

In the light of this theorem, our algorithm is the best
possible, as far as the number of evaluations are con-

cerned.

8. The Case When No Upper Bound on The Number of

Monomials is Known

In case ¢ is not known, we could try ¢t = 1,2,3, ..
but we would not know when to stop. Of course, (if the
degree of P(x) is known, then) we could use Schwartz’s
(1980) test to check probabilistically if the polynomial
obtained for a particular value of ¢ is in fact equal to
P(x). Is there some way of making this test

deterministic?

Can we use the theorem of Section 4 in case no
bound ¢ on the number of nonzero monomials is given?
It is known that the problem of determining the exact
number of monomials in P(x) given by a black-box is
#P-Complcte (Kaltofen 1986¢). However, it docs not
preclude the possibility of a deterministic algorithm
which dctermines the number of monomials ¢ in P(x) in

time to(l) . Indeed, the permanent of a 0/1 matrix can
be evaluated in time polynomial in its value (Gal and

Breitbart, 1974).

It turns out that onc can not determine the number
of monomials ¢ in P(x) in time I((I) (this point will be

306

discussed at length in the full paper). In light of this fact,
we have the following, somewhat surprising, result:
Lemma: Given a black-box containing a polynomial
P(x) in # variavles with all coefficients positive, there is
a poly(n, t, J)-time algorithm for determining P(x) where
d, and t are the (unknown) degree, and the (unknown)

mrsenr b o ol srmininsiianiale A el e

£ inl H H nfe
Dutn el UL HIVHULILIdD appedrlilg 1

r’\,\').

Proof: Try the algorithm of Figure | for ¢ =1,2,3, ...
The theorem of Section 4 provides the desired stopping
rule, If det(V) >0, but det(Vyy)=0,thent=1{.=

The following lemma may give some useful infor-
mation in the general case, but it falls short of providing
a stopping rule:

Lemma: If the rank of V,is k, then the number of non-
zero cocfficients in P(x) is either exactly k, or it is at least
2l—k.

Proof: Follows from thc fact that the cigenvalucs of a
symmctric matrix intcrlcave the cigenvalues of any prin-

cipal minor. »

9. Discussion and Related Open Problems

The following lemma implies that in order to check
if a univariate t-sparse polynomial is identically zcro, it
is sufficient to evaluate it at any points »; > 0, for
i=1,2,3,...t.

Lemma (see, for example, Evans and Isaacs, 1976): Let
A be a k x k matrix given by (A),-j = .x,rJ, where x;> 0,
and r; are positive integers, for i=1,2,...,k. Then, A is
nonsingular.

It follows that in order to check if two univariate t-sparse
polynomials are identical, it is sufficient to evaluate them
at any 2¢ points 1; >0, for i = 1,2,....2¢. In other words,
the valucs at these 2¢ points uniquely determines a
univariate f-sparsc polynomial. Picking the specific val-
ues of u;, as we have done here, enables us to reconstruct
the polynomial from these points. Can onc cfficiently
reconstruct a univartate t-sparse polynomial from its

values at any sct of 2z points?

Rational functions give rise to another interesting

interpolation problem. Define a t-sparse rational func-

tion to blc r(x) = —[-7-2——;- where a(x Za o , and

b(x) = thx Then, in order to chcck if a t-sparsc ra-
tional fiFdction is zero, it is sufficient to cvaluate it at ¢
points, x = 1, 2,..., ¢, and hence check if the numecrator is
zero identically. Now consider the problem of checking
if two t-sparse rational functions g(x) and #(x) are equal.
By using the above lemma, we can conclude that it is
sufficient to evaluate these rational functions at 2t2

2

points x = 1,2,..., 2¢t” . Can this bound be improved?

What is a good lower bound?

The problem of determining (interpolating) a
t-sparse rational function, given a black-box for evaluat-
ing it, is a problem that we have not becn able to solve
satisfactorily. Suppose we are given a black-box for

cvaluating r(x) = where a(x), and b(x) are as

alx
b(x)
defined above. Furthermore, assume that j;, ;; < d and
dis given. Suppose it is known that the rational function
r(x) takes on values r; at points x; , fori = 1,2, ..., k.
Then, one way of solving the interpolation problem
would be to solve the following system for a sparse vec-

tor:
&o
i 2 d 2 PFRRES
boxp xy o X orp Xy npXp e rpx
2
1 x5 x22 e Xy Py FpXp FaXy . FoX)
&4
=0,
fiy
2 d 2 d iy
1 Xk Xp een Xk I‘k rkxk rkxk rkxk]
hq

Any solution of this system with at most k/(2¢) nonzero
components will give enable us to compute r(x) effi-
ciently. The gencral problem of determining if there is a
sparse vector in the null space of a given matrix, is
known to be NP-Complcte. Is there an efficient algo-

rithm for this special case?

307

Generalizing our results above for the casc of finite
ficlds we cncounter two major problems, The first prob-
lem is finding a replacement for the cvaluation points so
that later on we can recover the actual monomial from
its valuc at these points. The sccond problems arises
from the need to solve polynomial equations over the fi-
nite ficld. Here there are efficient probabilistic algorithms
but we do not know efficient detcrministic algorithms

when the characteristic of the field is large.

Let GF(g), ¢ = pk, p prime, be the finite field with
g elements, and let P(x) € GF(q)[x] be a polynomial of
degree at most d having at most ¢ monomials. First two
of the following three cascs can be dealt with by our
technique using only 2¢ cvaluation points:
Very Large p: If the characteristic of the field is very big,
say, p > 32"d', we can usc the algorithm for the zero
characteristic case, using the same evaluation points as
before. Since p is so large, we arrive at step 4 of our al-
gorithm, with the polynomial A(z), whose coefficients are
integers much smaller than p. Therefore, computing
modulo p, we get the same polynomial as before. This
follows immediately from the fact that the product of the

first n primes is less than 3"

We can now avoid the problem of finding the roots
of polynomials over finite ficlds where only efficient
probabilistic algorithms arc known, by finding the roots
of our polynomial A(z) over the real numbers just as we
did in the zcro characteristic case.

Very Small p: If the characteristic p is small, say,
polynomial in ade, then we can find roots of polynomials
in GF(qk) dcterministically using Berlckamp’s algorithm
(Berlckamp, 1970) that reduccs the problem to solving
polynomials over the the prime ficld GF(p), where a
straight forward search can be used. The old evaluation
points arc uscless in this case and we replace them by
picking evaluation points from extension fields.

Using the algorithm due to Adelman and Lenstra
(1986), we deterministically find an irreducible
polynomial flw) e GF(g)[w] of degree at Icast e = 2nd.
We will usc cvaluation points in

GR@) W] W)=GF(q*)=GF(p*®) . Notc that if our
polynomial P(x) is given by a polynomially long straight
linc program, instead of a black-box, then this computa-
tion requires only polynomially many field operations in
GF(q), and can also be done fast in parallel.

Without loss of generality we may assume that
q > n, (otherwise first extend the ground field by an ex-
tension of degree log n). Let q ..., @, be ndistinct points
in GF(q). As our evaluation points we pick
up_((w— al)i,(w - az)i, (W~ an)i) € GF(qe)" for
i=0,1,.,2t- 1

Let M; = x;™ ... x,™ be the i -th monomial of P(x),
and let m; = M,(u;). Since the degree of wis greater than
dn, the representation of mz1; as a polynomial in w modulo
f(w), is exactly the polynomial
m_(w — a)™ ... (w — a,)"" and so m; # m; for i # .
Arriving at step 4 of our algorithm we can
deterministically find the roots m; of the polynomial
A(z2), in their representation as polynomials in w. Fac-
toring each m; as a polynomial in the variable w into its
linear factors we can recover the actual monomial.
Intermediate p: Here we can use the same evaluation
points in a large enough extension field, but we do not
know how to find the roots of the polynomial A(z) in an
cfTicient deterministic way. However, using the algo-
rithm of Tiwari (1987b), we can use the similar evalu-
ation points in an appropriate extension ficld, to give a
polynomial time, but less efficient, deterministic solution.
This algorithm also leads to NC solution of this problem
in all the above cases. Howsaver, the minimum number
of evaluations required for interpolation over finite fields
remains open.

10. Acknowledgements

We would like to thank Noga Alon, Allan Borodin,
Don Coppersmith, Scot Hornick, Erich Kaltofen,
Lakshman Yagati for discussions on topics covered in
this paper. Don Coppersmith pointed out the similarity
between univariate intcrpolation and decoding BCH
codes. Discussions with Allan Borodin led to some of the
open problems discussed in the paper. Noga Alon, Don

308

Coppersmith, and Scot Hornick pointed out that, in
principle, an adaptive algorithm can determine a t-sparse
polynomial with only ¢ + 1 cvaluations. Erich Kaltofcn
and Lakshman Yagati pointed out that the complexity
of our interpolation algorithm is dominated by the com-
plexity of the root finding algorithm.

The second author would also like to thank Richard
Karp for pointing out the work of Grigoriev and
Karpinski (1986).

11. References

L. M. Adelman and H. W. Lenstra, Finding irreducible
polynomials over finite ficlds, Proc. of the [&8th Annual
ACM Symposium on Theory of Computing, pp.
350-355, 1986.

E. R. Berlekamp, Factoring polynomials over large finite
fields, Math. Comp. 24 (1970) 713-735.

R. E. Blahut, The Theory and Practice of Error Control
Codes, Addison-Wesley Publishing Co., 1983.

J. Edmonds, Systems of distinct representatives and lin-
car algebra, J. Res. Nat. Bur. Stand. 713 (1967) 241-245.

R. J. Evans and 1. M. Isaacs, Generalized Vandermonde
determinants and roots of unity of prime order, Proc. of
the AMS 58 (1976) 51-54.

Shmuel Gal and Yurj Breitbart, A method for obtaining
all the solutions of a pcrfect matching problem, Techni-
cal Report No. 016, IBM Israel Scientific Center (May
1974).

J. von zur Gathcn, Parallel powering, Proc. of the 25th
IEEE Symposium on Foundations of Computer Scicnce,
pp. 31-36, 1984.

D. Yu. Grigoricv and M. Karpinski, The matching
problem for bipartite graphs with polynomially bounded
permancnts is in NC, Rescarch Report No. 857-CS,
Univ. Bonn (Dcc. 1986).

D. Yu. Grigoricv and M. Karpinski, The matching

problem for bipartite graphs with polynomially bounded
permanents is in NC, Proc. of the 28th IEEE Symposium
on Foundations of Computer Science, pp. 166-172, 1987,

E. Kaltofen, Factorization of polynomials given by
straight linc programs, manuscript, 1986.

E. Kaltofen and B. Trager, Sparse factorization and ra-
tional function interpolation of polynomials given by

black-boxes for their evaiuation, manuscript, 1987.

R. Loos, Computing rational zeros of intcgral
polynomials by p-adic expansion, SIAM . Comp. 12
(1983) 286-293.

L. Lovasz, On determinants, matchings, and random al-
gorithms, Fundamentals of Computing Theory, edited by
L. Budach, Akademia-Verlag, Berlin (1979).

J. T. Schwartz, Fast probabilistic algorithms for verifi-
cation of polynomial identities, JACM 27 (1980)
701-717.

P. Tiwari, Paralle! algorithms for instances of linear
matroid parity with a small number of sotutions, RC
12766, IBM T. I. Watson Research Center, May 1987.

P. Tiwari, Algorithms for multivariate polynomial in-

tecrpolation, manuscript, June 1987.

R. E. Zippel, Probabilistic algorithms for sparse
polynomials, Proc. EUROSAM 79, Springer Lecture
Notes in Computer Science, vol. 72, pp. 216-226, 19795.

R. E. Zippel, Interpolating polynomials from their val-
ues, manuscript, 1988.

309

