
Analysis of Algorithms, A Case Study:
Determinants of Matrices With Polynomial Entries

W. M. GENTLEMAN

University of Waterloo

and

S. C. JOHNSON

Bell Telephone Laboratories

The problem of computing the deternunant of a matrix of polynomials IS considered; two algo.
rithms (expansion by minors and expansion by Gaussian ehmmatmn) are compared; and each is
examined under two models for polynomial computatmn (dense univanate and totally sparse).
The results, while interesting in themselves, also serve to display two points: (1) Asymptotic
results are sometimes misleading for noninfimte (e.g. practical) problems. (2) Models of computa-
tion are by definition simplifications of reahty: algorithmic analysis should be carried out under
several distract computatmnal models and should be supported by empirical data.

Key Words and Phrases: symbohc algebraic computation, analysm of algorithms, determinants
of polynomial matrices
CR Categories: 5.25, 5.7

1. INTRODUCTION

Some algori thms which are efficient for integer computa t ions are dist inctly sub-
opt imal for the analogous polynomial computa t ions . As an example, Gen t l eman
E3] studied powering of polynomials and showed that , even in the computa t ion of
p4, it can be faster to compu te this as ((p~)p)p t han as (p2)2 (as one would for
fixed-length integers) . Heindel [-4~ and F i r e m a n [-2J have also studied this prob-
lem, using more than one model.

We examine the computa t ion of de te rminants of n-by-n matrices with poly-
nomial entries. At the outset we shall restrict our problem still fur ther by ignoring
the impor t an t case where the matr ix has m a n y zero entries and by assuming tha t
the entries in the mat r ix are all the same size. Our analysis focuses on two algo-
r i thms, Gaussian el imination and expansion by minors, and two computa t iona l
models, dense univar ia te and to ta l ly sparse; Section 2 describes the algori thms;
Section 3 describes the models; and Section 4 describes the applicat ion of these

Copyright (~) 1976, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the pubhcatlon, to its date of issue, and to the fact that
reprinting privileges were granted by permission of the Association for Computing Machinery.
This work was supported in part by the National Research Council of Canada under Grant
A7407
Authors' addresses: W.M Gentleman, Mathematics Faculty Computing Faclhty, University of
Waterloo, Waterloo, Ont., Canada, S.C. Johnson, Bell Telephone Laboratories, Murray Hill, NJ
07974.

ACM T r a n s a c t i o n s o n Mathematical Software, Vol. 2, No. 3, September 1976, Pages 232-241.

Analysis of Algorithms 233

models to the two algorithms. Finally, Sections 5 through 7 discuss the results of
the theoretical analysis and give some empirical data in support of these results.

2. THE DETERMINANT PROBLEM

Suppose we are given an n - b y - n matrix of polynomials. We consider two ways of
computing the determinant of this matrix: Gaussian elimination and expansion by
minors. We assume that all the entries in the matrix are of equal size.

We first describe the Gaussian elimination method, using exact division, which
is appropriate for computations over the integers; an Altran program is given in
Appendix I. If we ignore pivoting, the algorithm consists of n - 1 steps, indexed
by a variable k running from 1 to n - 1. The kth step involves the computation of
an n - k + l by n - k + l matrix, which we shall call A(k+l); the entries will be de-
noted a~ +1), with k < z, j _< n. The original matrix is identified with A (1).

For each k, the entry a~ +1) is computed by the formula

a(k+l) f,~ (k) ~ (k) ,~ (k) ~ (k) ~ / , ~ (k- - l)
*3 ~ \ ~ k k ~ , j - - ~" , k ~ ' k 3] / ~ k - - l , k - - 1

for k + l < ,, j < n, where ,(0) is taken to be 1. The division is always exact, so __ __ wOO

(k) is a polynomial, and -(") is the determinant of A (n) that each a , (t n n

An analysis of this algorithm (see Bareiss [-1~, Lipson [-5~) shows that each
a(k) is a determinant (minor) of some k-by-k submatrix of the original matrix.

~3

Since we assumed all entries in the original matrix to be of the same size, we may
expect that all elements in A (k), for a given/z, are the same size.

To compute a~) takes two multiplications, a subtraction, and a division. In
general, the cost of multiplying two polynomials will depend on their size; in our
situation the size is assumed to depend only on the order of the minor making up
the element. Thus we shall use numbers C~, to compute the cost of our algorithm,
C,, is the cost of multiplying a minor of order r by a minor of order s. Notice that
C~.I is the cost of multiplying two elements from the original matrix. We assume
also that an exact division of A by B to yield C has the same cost as a multiplica-
tion of B by C, and we ignore the costs of addition and subtraction.

We can now write the cost for Gaussian elimination in terms of the C,~. To com-
pute a~ +1) requires two multiplications of cost Ckk, a division of cost Ck-~.k+~, and
a subtraction whose cost we do not count. There are, for a given/~, (n - k) 2 elements
a~+i); so the total cost for the Gaussian elimination is

n--1

G = ~ (n - k)~(2C~ + C~_~,~+~).
k ~ l

Note that, when C~, = 1 for all r and s, representing the familiar floating-point or
fixed-length integer case, the cost becomes

n--1

G = 3 ~_, (n - k) 2 = n 3 - ~n 2-{- ½n.
k ~ l

We now turn our attention to the expansion by minors algorithm; an Altran pro-
gram for this is given in Appendix II. We again have n--1 steps, indexed by k
from 2 to n. At each step, we compute all of the k-by-k minors from the first /~

A C M T r a n s a c t i o n s on M a t h e m a t m M S o f t w a r e , ¥ o l . 2, N o 3, S e p t e m b e r 197fi

234 W . M . Gentleman and S. C. Johnson

columns (there are (~) of them), using the k - 1 by k - 1 minors from the first k - 1
columns, computed in the previous step. We ignore the bookkeeping and concen-
trate on the cost of the polynomial operations. Computing each k-by-k minor in-
volves k multiplications, and k - 1 additions and subtractions, which we ignore.
Thus, using the C~,, each new minor has a cost of kCk_l,1. The total cost is thus

" k ~ (n-- 1) !
M = (~) Ok-l.1 "~- n

k-2 k-2 (k-- 1) !(n--k) !
C k - l , 1 = n (k _ l) C k _ l , 1

k i 2

n--1
n ~ n--1 = (~)C~1.

Once again, we examine the cost when each Cr8 is 1; we have

n--1

M = n ~ (.~1) = n(2~-1 _ 1).
k l l

We now consider the models of polynomial computation.

3. MODELS OF COMPUTATION

The two models of polynomial computation we consider in this section are ex-
tremes in the sense that other models tend to lie between them. The models share
many similarities, chiefly in the simplifying assumptions. We list the major ones
here for future reference.

1. We assume that the algorithm which multiplies a polynomial with n terms
by one with m terms has a cost proportional to ran.

2. We assume that the cost of coefficient operations is constant, irrespective of
the size of the polynomial. (This is frequently false; we discuss our reasons for
making this assumption later.)

3. Finally, we assume that, in multiplying two polynomials, terms explicitly in
the product never end up with zero coefficients (cancel out).

Suppose that we multiply two polynomials having m and n terms, respectively.
Under Assumption 1, the only difference between models is the s~ze of the result;
the multiplication cost is always ran. In the sparse model, we assume no combina-
tion of terms at all; the resulting polynomial has m n terms, the maximum possible
number. Similarly, an addition of n and m term polynomials yields m + n terms.
In the dense model we assume that, subject to Assumption 3, the product of m
term and n term polynomials has the least possible number of terms: r e + n - 1. This
bound is attained when the polynomials are univariate with no nonzero coefficients.
Similarly, addition of these polynomials yields max (ra,n) terms.

In the remainder of this section, we examine our assumptions to better place
these models into context. Section 4 applies the formulas to the two determinant
algorithms.

The aim of every model is to describe and focus on some aspect of reality; models
can frequently be described best by describing what they ignore, not what they

ACM T r a ~ a c t i o n s o n Mathematical Software, Vol 2, No 3, September 1976.

Analysis of Algorithms 235

contain. Both of these models are extreme; we suggest that most practical problems
will show aspects of both models. In the most radical departure from reality, both
models ignore coefficient growth. Speaking roughly, models that treat coefficient
growth behave as though another (dense) polynomial variable were added to the
model; for example, univariate polynomials whose coefficients grow behave very
similarly to two-variable polynomials. Thus the addition of variable-length coeffi-
cients to the dense model makes the model "less dense," since intermediate results
grow in size more rapidly than the univariate model we consider. Similarly, putting
a dense dimension into the sparse model makes the model "more dense." We choose
to analyze the sparse and dense models in their purest form and then to back up
our conclusions with empirical data.

The other assumption which deserves mention is that multiplications of m terms
by n terms takes time mn. In the dense case, this is immediate by using the classical
multiplication; we ignore the fast Fourier techniques. In the sparse case, we usually
wish to sort the terms in the product into some kind of canonical ordering. The
most naive algorithm would take a time proportional to mn log (mn) ; the algorithm
used in Altran takes a time proportional to mn log (min (re,n)). This appears to be
the fastest known algorithm; we know of none which actually runs in time mn.
Nevertheless, we shall neglect the effect of the log term; in practice, the bookkeep-
ing and coefficient operations run as mn and dominate the sorting term over a wide
range of practical problems.

4. APPLICATION TO THE ALGORITHMS

In this section we apply the models described in Section 3 to the algorithms de-
scribed in Section 2. Recall the cost formulas for Gaussian and minor expansion:

G =
n--1 n--1

~_, (n -k)2 (2Ckk + Ck+~.k-~); i = n ~ (n~l) Ckl.
kffil k ~ l

By Assumption (1) in Section 3, each Crs, the cost of multiplying an rth-order
minor by an sth-order minor, is given by

C~8 = SrS~,

where S~ and So are the number of terms in an rth-order and an sth-order minor,
respectively. We may thus write

n--1 n--1

G --- ~_, (n - -k)2(2Sk 2 -t- Sk+iSk-1); M = nS1 ~ (n~) Sk.
k ~ l k - - !

The problem is now reduced to computing a value for Sk for each model and then
doing some summation. In the following discussion the superscripts d and s refer
to the dense and sparse models, respectively. We assume that, in each model, the
initial entries of the matrix have t terms.

Computing S(k d) is very simple: a dense polynomial with t terms has degree t - 1 ;
so a k-by-k determinant of such polynomials has degree k (t - 1) , and thus

A C M Transact ions on Mathematical Software, Vol 2, No 3, September 1976

236 W.M. Gentleman and S. C. Johnson

k (t-- 1) + 1 terms. We compute

n--1
M (d) = nt ~_, (,~-1) (k (t - 1) + 1)

k~l

) = nt (n k l) + (t--l) ~ ('~'x)k
\ k~l k=l

n--1 /
= nt 2 "-~ -- 1 + (t - - I) ~ (nk l) k .

k-1

Moreover,

. - 1 " - ~ (n - 2) T " - ~
= • = (~_~) ("~a)k (n - - l) ~ (n - - k - - 1) ! (k - - 1) ! (n - - l) ~ .-2

k=l k~l k=l

n--2
= (n - - l) ~ (~-2) = (n_ l)2n-~ .

k=0

Thus

M (d) = nt (2 n - l - 1 + (n - - l) (t - 1) 2 ~ - ~) .

So M (d) depends exponentially on n, and quadratically on t.
G (~) is conceptually easier, but computat ional ly harder, to compute. We have

G (a) = ~ (n - k) 2 (2 (k (t - 1) + l) 2 + ((k - k l) (t - 1) + l) ((k - 1) (t - 1) + l))

= ~ (n - k) ~ (3 (k (t - 1) - b l) ~ - (t -1)2)

= ~ n (n - 1) ((3n 3 -k 3n 2 - 7n q- 8) (t - l) 2

q- 1 5 n (n + l) (t - l) -[- 1 5 (2 n - 1)) .

Since this depends quintically on n and quadratically on t, M (~) is asymptot ical ly
greater than G (d) as n goes to infinity. Table I gives the values of G (~) and M (~) for

" - ~(d) G (d) < 5, for n = 6 and small values of n and t. Notice tha~ ~w is smaller than for n _
t > 1, and for n = 7 and t > 3. In all other cases, G (d) is smaller. Thus, in spite of
the evidently poor asymptot ic growth of M (d), i t appears tha t (at least counting
the number of multiplications) expansion by minors m a y be faster in many prac-
tical dense situations.

The analysis in the sparse case is considerably clearer. We must first compute
the sizes Sk('); a k - b y - k determinant is the sum of k! products, each of which is the
product of k t-term polynomials. By the assumption of sparseness, each product has
t ~ terms, and there is no cancellation in the additon; thus S(k ') = k !t k.

We may now compute

n--1 n--1

U (~) = nt ~ (' ~) k ! t k = nt ~ , [(n - - 1) ! / (n - - k - - l) ! '] t ~
k ~ l k ~ l

n-1
= n ! t n ~ [t - (n - k - O / (n - - k - - 1) ! "] <_ n!tne lit.

ACM Transactions on Mathematmal Software, Vol. 2, No 3, September 1976

Analysis of Algorithms

Table I. Comparison of M (d) with G (a)

237

n 1 2 3 4 5 6 7 8 9

m 2 2 8 18 32 50 72 98 128 162
g 2 3 II 23 39 59 83 111 143 179

m 3 9 42 99 180 285 414 567 744 945
g 3 15 70 163 294 463 670 915 1198 1519

m 4 28 152 372 688 llO0 1608 2212 2912 3708
g 4 42 250 634 1194 1930 2842 3930 5194 6634

m 5 75 470 1185 2220 3575 5250 7245 9560 12195
g 5 90 672 1818 3528 5802 8640 12042 16008 20538

m 6 186 1332 3438 6504 10530 15516 21462 28368 36234
g 6 165 1517 4313 8553 14237 21365 29937 39953 51413

m 7 441 3570 9387 17892 29085 42966 59535 78792 100737
g 7 273 3038 8981 18102 3 0 4 0 1 45878 64533 86366 111377

m 8 1016 9200 24552 47072 76760 113616 157640 208832 267192
g 8 420 5572 16996 34692 58660 88900 125412 168196 217252

m 9 2295 23022 62181 119772 195795 290250 403137 534456 684207
g 9 612 9552 29892 61632 104772 159312 225252 302592 391332

m 10 5110 56300 153570 296920 486350 721860 1003450 1331120 1704870
g 10 855 15519 49611 103131 176079 268455 380259 511491 662151

T h e cos t a p p r o a c h e s th i s b o u n d v e r y q u i c k l y as n increases . N o t i c e t h a t

M(8)/SI~) < el/t; so t h a t , in genera l , e x p a n s i o n b y m i n o r s does less than three
multiplicatzons per term zn the answer!

T h e G a u s s i a n r e su l t is h a r d e r to wr i t e in c losed fo rm. W e h a v e

G (s) _ - -

n--1

E
k=l

(n - k) 2 (2Sk~ + &+lSk-1)

n--1

E (n -k)2(2(k !)2 t 2k + (k - - 1) ! (k - k l) ! t ~k)

n--1 n--1

= ~ (n - - k) 2 (k ! / k) ~ (2 -k (k + l) / k) = ~ (n - - k) 2 (k ! t k) ~ (3 ~- l / k) .
k=l k=l

Clea r ly , t h e t e r m s g r o w v e r y q u i c k l y w i t h i nc r ea s ing k. I n fac t , G(') is c e r t a i n l y

l a rge r t h a n i ts l a s t t e r m (k = n - 1) :

G(') _> 3 ((n - 1) ! t ~ - ') 2 ;

ACM Transactions on Mathematical Software, Vol 2, No 3, September 1976.

238 W.M. Gentleman and S. C. Johnson

SO

G(')/S (') >_ 3((n-1)!)2t~'-2/n!t" = 3(n-1)! t , -2 /n .

Thus the cost per term grows exponentially in n. Further analysis shows that G (')
is always greater than M(').

To summarize the results of this section: in the dense case, for small matrices
expansion by minors takes fewer multiplications, while for large problems Gaussian
elimination takes fewer; in the sparse case, expansion by minors always takes fewer
multiplications. Section 5 discusses these findings in more detail.

5. DISCUSSION

Recall that the sparse and dense polynomial models represented two extremes,
where the results of the computation grew as fast or as slowly as possible without
cancellation. Inspection of the formulas for M and G shows clearly what is happen-
ing: when Sr grows slowly (e.g. polynomially) in k, the (~1) term in the formula
for M causes an exponential dependence of M on n, while G has only a polynomial
dependence on n. Thus for large enough n, G is smaller. On the other hand, when
Sr grows rapidly (e.g. exponentially), the Sk ~ terms in the formula for G come to
dominate the (~-1) Sr term in the formula for M, and M is smaller.

The question of which algorithm to use in practice thus seems to depend on how
rapidly we expect Sk to grow with respect to k. If we believe that our problems in-
clude a considerable combination of terms and small answers, we tend to favor
Gaussian elimination; if we believe in large answers, as caused by variable-length
coefficients and multivariate problems, we tend to favor expansion by minors. ,

Another striking feature of the above results is the extent to which an "expo-
nential" formula for M is better than a "polynomial" formula for G over a con-
siderable range of practical problems, even in the dense case. This serves to show
the pitfalls of asymptotic analysis when applied to noninfinite problems.

6. SOME EMPIRICAL RESULTS

Since the analyses in the previous sections make many simplifying assumptions
(although the typical asymptotic analysis makes more!), the concluded superiority
of minor expansions may still not appear in practice. To investigate how well our
assumptions are borne out, we made a number of tests with the Altran programs,
given in Appendixes I and II, which tend to support the above analysis. As an
example, we attempted to compute the determinants of n-by-n symmetric Toeplitz
matrices for orders through 8, using Gaussian elimination and expansion by minors.
The nth-order matrix was defined in terms of nWl variables, Xo, X1, • • • , Xn, by
a,j = XI,-~l.

The results are given in Table II. These represent CPU time, in seconds, for
the Altran programs running with a 20,000-word workspace in an IBM 360/75 at
Waterloo University.

Thus, even with a highly structured matrix in seven or eight variables, the minor
method is a clear winner.

ACM Transactions on Mathematical Software, Vol 2, No. 3, September 1979

Analysis of Algorithms

Table II

Order Minors Gauss

4 14 5 10 4
5 36 5 47.2
6 97 3 247.6
7 252.43 > 1475.2 (out of time)
8 ~588 (out of space)

239

7. CONCLUSION

We hope to have made two larger points in addition to the direct results of this
paper. We have seen that an asymptotically inferior method cannot always be
dismissed when dealing with practical problems. In effect, the algebraic manipula-
tions which are currently practical frequently lie much closer to zero than to in-
finity. This is not to say that asymptotic analysis is not useful, but just that it
must be kept in its place!

Our second goal has been to indicate that rival models, or extreme models, can
and should be used to gain insight into the algorithms being studied. In this sense,
a continuum of crude approximations seems to us less revealing than a couple of
well-chosen extreme points.

REFERENCES

1. BAREISS, E H. Sdvester's identity and multistep integer-preserving Gaussian ehmination.
Math. Computatwn 22 (1968), 565-578.

2. FATEMAN, R.J. On the computational powers of polynomials. Dep. Math. Rep., M.I.T.,
Cambridge, Mass.

3. GENTLEMAN, W.M. Optimal multiplication chains for computing a power of a symbohc
polynomial. SIGSAM Bull. 18, Apml 1971. To appear m Math. Computation.

4. HEINDEL, L.E. Computation of powers of multivariate polynomials over the integers. J .
Computer Syst. Sci., 1 (Feb. 1972).

5. LIPSON, J.D. Symbohc methods for the computer solution of hnear equations with apphcatlons
to flowgraphs. In P.G. Tobey, Ed., Proc. 1968 Summer Institute on Symbohc Mathematmal
Computation, I.B.M. Programming Lab. Rep. FSC69-0312, June 1969.

Received June 1973, revised October I974

(Please see appendixes on next page)

ACM Transactions on 1Kathematmal Software, Vol. 2, No 3, September 1976

2 4 0 • W . M . Gent leman and S. C. Johnson

APPENDIX I
procedure det(a, n)
algebralc array a; integer n; value a, n

this procedure calculates the determlnant of the
n by n matrlx a by integer preservlng gausslan
ellmlnatlon

integer array (1:n) reorder
integer i~ 11, Jr k, kk, slgn=1
algebraic divisor = I

do k = I, n
reorder(k) = k
doend

do k = I, n-1
do i : k, n

if(a(reorder(1), k) .ne. 0) goto plvot
doend

return(0)

pivot:
if(1 .eq. k) kk : reorder(k)
else do

kk : reorder(1); reorder(l) : reorder(k)
reorder(k) = kk; slgn = -sign
doend

do i : k+1, n
ll = reorder(1)
do j : k+1, n

a(ll,3) = (a(ll,j)*a(kk,k) - a(ll,k)*a(kk,J)
dlvlsor

doend
a(ll,k) = .null.
doend

dlvlsor = a(kk,k)
do j = k,n

a(kk,J) = .null.
doend

doend

return(slgn * a(reorder(n), n))
end

) /

APPENDIX II

procedure det(a,n)

algebraic array a; integer n; value a, n

thls procedure calculates the determlnant of the n order
matrlx a by expanding by minors
integer array (0:n,0:n) blnom
altran integer pascal
algebraic array (0:1,0:pascal(n,blnom)) mlnor=0

pascal initlallzes the blnomlal coefflclent table, and
returns as its value n choose n/2 less I
we keep track of' our minors using the method of indexing
described in CACM 3 (1960), p. 235 (R. M. Brown)

ACM Transact*ons on Mathematical Software, Vol 2, No. 3, September 1976.

Analysis of Algorithms

integer loc, addr, sign, m, j, k, old:O, new=1
integer array (O:n+1) i = -I

i(0) : n

do ~oe ~ I~ ~; minor(old, loc-1) = a(1, foe); doend
do = , -

compute m+1 order minors from m order

loc = 0
do j = I, m; l(J) = m-J; doend

nextminor:
k = n-l; 3 = O; addr = loc+binom(k, m+1); slgn = I

nextuse:
if(k .eq. l(J+1)) do

3 = J+1; sign = -sign; doend
else

m~nor(new, addr) = minor(new, addr) +
slgn * a(m+1, k+1) * mlnor(old, loc)

if(k .gt. 0) do
k = k-l; addr = addr-blnom(k, m-J); goto nextuse
doend

dispose of unnecessary minor' and increment indices

minor(old, loc) : 0
loc = loc+1
do 3 = m, I, -I

l(j) : l(J)+1
if(i(j) .lt. l(J-1)) goto nextmlnor
else l(j) = m-j
doend

241

all m+1 order minors are now calculated

old = l-old; new = l-new
doend;

return(minor(old, 0))
end

procedure pascal(n, blnom)
integer n, blnom; array binom

inltlallzes the table of binomial coefficients, and returns the
maximum number of minors, less I

integer i, j

binom(O, O) = I
do 1 = I, n

blnom(l, O) = I; blnom(l-1, l) = 0
do j : I, i

binom(l, J) : blnom(l-1, 3-1)+blnom(1-1, 3)
doend

doend

return(binom(n, iquo(n, 2))-I)

end

ACM Transactions on Mathematical Software, Vol 2, No. 3, September 1976.

