Algebraic Factoring and Rational Function Integration

by

Barry M. Trager

Laboratory for Computer Science, MIT
(formerly Project MAC)_

Abstact

This paper .presents a new, simple, -and

~efficient algorithm for factoring polynomial%s in,

-several variables over an algebraic number field.'
The algorithm is then used iteratively to construct
the splitting field eof a polynomial over the
integers. Finally the factorization and splitting
field algorithms are applied to the problem of
determining the transcendental part of the integral
of & rational function. In particular, a
constructive procedure 1s given for finding the
least dogree extension field in which the integral
can be expressed.

1. Introduction

For many applications in symbolic mathematics
it 1is necessary to explicitly describe -all - the
roots of a polynomial. One approach is to’ compate
the roots numerically - to some predetermined
accuracy. This is the approach taken in numerical
analysis packages but 'is generally
symbolic manipulations as ‘the basic routimes such
as greatest common divisor and factoring would then
be useless. Another attempt is to try to express
the roots 1in terms of radicals, but this often
cannet be done, and even when it can it leads to
great problems when simplifications ‘are. reduired.
The approach taken here is.to describe an extension
field of the rationals by the minimal polynomial
for some primitive element and then to express all
the roots of the polynomials in terms of that
element. If an irreducible polynomial over k is
normal - then all of 1its roets are rationally
.axpressible in terms of any one of them. Thus the
.dagree of its splitting field is the same as. the
degree of the polynomial. For other polynomials,
however, the degree of its splitting field may be
as high as n!. .This degree growth tends to make
many "computahle" problems practical
impossibilities. It then becomes very -important to
‘operate in as low degree an extension field as
‘possible.

Proceedings of the 1976 ACM Symposium
on Symbolic and Algebraic Computation

avoided - in

219

Norm.

2. HNorms and Algebraic Factoring

We assume the existence of some base field of
characteristic zero (e.g. the rationals) over which
we have constructive procedures for factoring
polynomials. We also assume the capability is
present to perform basic polynomial operations
(e.g. division with remainder) in both the:base
field and some extension field of finite degree.
Our. approach 1s to map a polynomial over an
extension field to one of higher degree in the base
field such that there is an exact correspondence
between their factorizations in their respective
fields. We use this correspondence to reconstruct
the factorization of the original polynamial over
the extension field.

2.1. Definitions

A numbér a which is algebraic over k satisfies
an irreducible polynomial with coefficients im k.
k{a) 1s the Field obtained by adjoining « to k.
Let f,(x) be the unique monic, irreducible. eguation
of degree n which a satisfies. The conjugates of «
over k are the remaining distinct roots of fon az,
X3, e If 8 is any element of k(a) then B
can' be represented uniquely as a poly_nomial in a,
of degree less than n, with coefficients. from %,

Ay

P (x). (See [5 pp. 91-94]) The conjugates of §
considered as an element of A{x) are P(az), P(aa),.
sees Plap). If B = P(a) we will let Bj represent
P(ai) .

A very useful mapping from k(a) to k is the
Norm(p) is the product of all the conjugates
of B relative to R{(a) over k. If we want to
emphasize the fields involved we may also write
Norm[k(a),”(p) Since the norm is symetric' in
the ey, by" the fundamental theorem on symmetric
functions it can be expressed ‘in terms of the
coefficients of P, and ‘thus lies in k.

We can extend the definition of norm to
polynomials in several variables with’ coefficients'
in R(a). Any such function can be expressed as
Gfx4,Xp....,xp,@) where G is ‘a polynomial in
several variables with coefficients im k. Then the
Norm(G) is the product of G(xj,Xj,...,Xg,ay) over
the n conjugates of a. ’

The definition given above for the Norm of G
coincides with the definition of.
Resultant(P,(y),G(x},...,%,¥)) as presented in [11
p. 86]. Collins [1] presents a modular resultant
algorithm which can be employed to effettively
compute norms. Even if the original polynomial is
sparse, its norm is 1likely to be dense; thus a
modular algorithm is probably the optimal choice.
Note that norm is a multiplicative functiaon by
definition, 1.e. Norm(A*B)=Norm{A)*Nerm(B). Thus
we can extend the norm to rational functions by
defining Norm(A/B)=Norm(A)/Norm(B).

We are now ready to prove an
important property of norms. {See [14 pp.

extremely
19-201)

Theeorem 2.1: If f(x.,a) is an irreducible
~polynomial over k(a) then the Norm(f) is a power of
an irreducible polynomial over k.

Proof: Assume Norm(f)=C(x)*D{x) where
gcd(C,D)=1. Let fy = f(x,a;), -then Norm(f) =
Product(fy). The polynomial f=f, divides Norm(f)

and .since f 1is irreducible, either f|C or f[D.
Assume for concreteness that f|C, i.e. C=fy*g;.
The fields k(«;) and k(aj) are canonically
isomorphic under a mapping ¢j which sends «y to ay
and is the identity on k. ¢J can be extended to
the ring of polynomials in x over those fields and
still remain an isomorphism. Since C(x) has all
its coefficients in k it is invariant under ¢4, but
fy; and g) are mapped to fj and g; respectively.
Thus the equation Csf;*g; becomes C= fj"g under ¢

Therefore ijC for 1<j<n, but ged(C,D)=1 imphes
that gcd(fj D)=1 for all j, and in turn
gcd(product(f),D)=1. But we assumed that
DiNorm(f)= product(fj), so we have shown that D=1.
Thus the Norm(f) cannot be split into two

relatively prime factors and can only be some power
of an irreducible polynomial. 1

A simple application of the above theorem is
for finding minimal polynemials fer elements of
R{a). If B is an element of R(a) then, as above,
B=Q(a). Thus x-B divides the Norm(x-Q{a))=B(x) and
therefore B(8)=0 The problem remaining is to
determine which irreducible factor of B{(x) f{s
actually the minimal polynomial of 8. The
polynomial x-f is 1linear and thus obviously
irreducible. By the above theorem we see that B{x)
can only be a power of the minimal polynomial for
B, B(x):P (x) (x) can be found directly by
calculating the gccﬂB(x),B'(x)-) where B'(x) is the
derivative of B(x).

We now turn to the problem of factoring
polynomials with coefficients in kR(a) assuming we
‘have this capability over k. The
perform basi¢ arithmetic in k(a) allows one to
compute gcd's of polynomials over k{a) by the
Euclidean Algorithm. Thus we can perform a square
free decomposition (see [15]) on any polyriomial and
reduce the factoring problem to square
polynomials.

Our approach to the factorization of f(x,a) is
first to make a linear substitution for x so that
. the norm(f) is square free. We then factor the
norm(f) over k. Norm(f)=G;(x) G(x)
each G; distinct and irreducible over k. We'_ claim
that gj(x,a)=gcd(f,G;) is irreducible over k(a) for
all 1 and that f=product(g;).

ability to

free

Gp(x) with

220

Tgy(x) is a polynomial over k.

Theorem 2.2: Llet f(x,a) be a polynomiel
over k(a) such that the Norm(f) is square free.
Let MI(G;(x)) be a complete factorization of .the

Norm(f) over k. Then M(ged(f(x.,a).Gi(x))) is @
complete factorization of f over k(a).
Proof: Let g4=gcd(f(x,a),G4(X)), then we

must show that each g; is irreducible and that all
the irreducible factors of f are among the g;. Let
v(x) be 'an irreducible factor of f over k{a). By
the previous theorem Norm(v) must be a power of an
irreducible polynomial over &k, but vif implies
Norm(v)|Norm(f) and the Norm{f) is square free.
Therefore the Norm(v) 1is irreducible and must be
one of the Gj. Since the Norm(f) is equal to the
product of the norms of each of the irreducible
factors of f, each G; must be the morm of some
irreducible factor of f. Assume both. vi(x) and
vz(x) divide gcd(f,G;) where v; and v, are distinct

irreducible factors of f. vilGy implies
norm(vy)Inorm(Gy) , but Gy(x) is a polynomial over
k and 1its norm is Gi('x)". The norm{v;) is
irreducible over k and divides a power of the
irreducible polynomial. Gi(x),_ thus the
norm(vy)=G4{x). Similarly the norm(vy)=G4(x).. But
(vi*va)If ‘implies Norm(vl"vz):Gi(x)zINorm(f) and

this contradicts the assumption that the Norm(f)
was square free. Therefore the gcd(f,G;(x)) must
be irreducible for all i. 1

The only missing step in the ‘previously
outlined factoring procedure is finding a linear
substitution that makes Norm(f) square free, We
claim that Norm(f(x+sa)) is square free for some s
in k. We will prove this in two stages, first for
f(x) a polynomial over &k and then extend the result
to polynomials over k(«x).

Theorem 2.3: If f(x) is a square free
polynomial with coefficients in k, then there are

only a finite number of s . in Rk such that
Illorm(f(x-sa)) has a multiple root..

Proof: Let the roots of f(x) be
B1+B2+.-.,Bp, all distinct; then the' roots of
f(x-saj) are Bj+saj,...,Bp+say. Let G(x) =
N‘orm(fix-sa)) = product f(x-saj). Thus the roots

of G are sag+B; for k<n,i<m. G can have a
multiple root only if s = (8. -ﬁi)/(ak—am) where.
k=m., Therefore there are only a finite number of

such values. |

Lemma 2.4: If f(x,a) is a square free
polynomial with coefficients in k(a) then there
exists a square free polynomial g(x) over R such
that flg.

Proof:

Let G(x) = Norm{f(x,a)), let flg;{x)}
be a square

free decomposition of G. Then g{x) =
Since £ is square
free and we have only discarded the multiple

‘factors of G(x), g(x) is divisible by f. 1

Corollary 2.5: If f(x.,a) is a square -frée
polynomial over k(a) then there are oaly a finite
number of s in k such that Norm(f(x-sa)) has a

.multiple root.

Proof:
the lemma.
‘number of s such that Norm(g{x-sa)} has multiple
roots. But fj|g implies Norm{f(x-sa,a)) divides

Let g(x) be a polynomial over.k as in

Norm(g(x~-sa)) and thus any multiple root of the

former is a multiple root of the latter. |

We are now ready to present the
factoring algorithm, but we will split off the norm
computation as a subroutine for later use by other
procedures.

Algorithm sqfr_norm
inpufz f(x.d) a square free polynomial over k(a)
output: a positive integer s,

R{x)=Norm(g(x,x)) a square
over k.

g{x,a)=f(x-sa,a},
free nolynomial
(1) s=0,g(x,a)=r(x,«) [initialize]

(2) R(x)=resultant(P,(y),9(x,y),y) [Norm, (resultant
taken with respect to y)]

(3) If degree(gcd(R{x),R'(x))=0 then return (s,d,R)
[safr check]

(4) s=5¢1, g(x,a)=g(x-a,a),go to (2) |
Algorithm slg_factor

input: f’(x.a)_ a square free polynomial over k{a)
output': a list of irreduciﬁle factors over k(a)
(1) (s,9,R)=sqfr_norm(f(x,a))

(2)

L=factor(R(x)) - [over &k,

factors]

returns

(3) If length(L)=1 then return (f) [original poly.

was 1rreduc1b1e}
(4) ‘For each hy(x) in L Do
{4.1) hi(x.a) = ged(hy(x),g(x,a))

(4.2) g(x,a) = g{x,a)/hy(x,a) [performed over
k(a)] _
(4.3) hy(x,a) = hy(x+sa,a) [undoes linear
' transformation]

{§) return (L) §

This factoring algorithm is similar to the one
presented in van der Waerden [11 pp. 136-7] but
computationally more efficient. If one wants. to
factor a univariate polynomial of degree d over an

extension field of degree n, van der Waerden's
‘approach requires computing a norm which is
bivariate of degree nd in each variable and then
factoring it over k.

leads to the computation and factoring of a
univariate norm of degree nd. It appears we have
the additional «cost of finding a linear

transformation which makes the norm square free.
However, the first step in factoring a bivariate
polynomial over the k is to find a substitution for
one of the variables which makes the result square
free.
this. algorithm is always

superior to van der
Waerden's.

By theorem 2.3 there are only a finite:

entire’

list - of.

The algorithm presented above

Thus there is no. actual additional cost and

221

.factoring over the integers [12].

‘extension fields.

"single element to our base field k.

R(y)=k(a,B).

Q{B,x) since Q(B,a)=0.

In [13] Paul Wang gives another algorithm for
factorization over algebraic number fields. His
appreach 1s an extension of his algorithm for
Wang's algorithm
utilized van der Waerden's technique when the
minimal polynomial for the algebraic number
factored over primes, e.g. x4+_l‘. He now uses. our
improved algorithm in this case. In other cases,
Wang's algorithm appears somewhat faster than ours,
but his is restricted to algebraic numbers. Our

‘algorithm can alsp be used on algebraic functions

and tlius has the advantages of increased generality
as well as simplicity. We expect to analyze ‘the
computing times in both algorithms in the near

. future.

3. Primitive Elements

Next we will present an algorithm .for
computing a primitive element for a tower of
All of the algorithms we have
presented have assumed that the extension field we
operate in can be described by the adjunction of a
If our current
extension field is k(a) and B is algebraic over

‘A(x). with minimal polynomial Qﬂ(x.a)- then k(a«,B) is

the field abtained by adjoining 8 to k(a). We seek
some o which 1s algebraic over Rk such that
The following theorem will prove very
useful. :

Lemma 3.1: Let Py(x) be the minimal
polynomial for « over k and B be a root of Ax.a)},
a square free polynomial. If Norm k(a)/k](Qﬁ(x” is
squdare free then gcd(Pa(x),Q(ﬂ.x)S is linear.

Proof: a is clearly a root of bot.h Ppfx} and
Let the other roots of P{x}
be a4 for j=2,...,n. If Q(B,x;)=0 then 8 is a root
of oth Q(x,a) and Q(x,qxﬁ. but Norm(Q) is
NAYx,x3) and ‘then B is a multiple root of the
norm. Since the norm 1is square free this cannot
happen and the only.common root of P(x) and Q(8,x)
is a. Therefore the gcd(P(x),Q(8,x)) is linear. T .

Tﬁeorem 3.2: Llet Qp(x,a) be the minimal
polynomial for B over k(a) and Py(x) be the minimal
polynomtal for « over k. If lllorm[k(a)/k](QB(x)) is

squure free then k(a,p) k(ﬂ)

Proof: We only need to show that o« is
representable in k(B8). By - the 1lemma the
gecd{Q(8,x),P(x))=x-c, i.e. is 1linear. c¢ is the
only common root of Q(8,x) and P(x), so c=a. But

Q(p,x) and P(x) are both polynomials over k(8) and
so their gcd is over k(B). Thus a=c is in k(). |

Given an arbitrary 8 the norm(Qp(x.a)) may not
be square free, but algorithm sqfr_norm will find
an integer s and a polynomial g(x,a) such that R(x)
= Norm(g(x,a)) 1s square free. Since. Q(x,a) is
irreducible over k{a) and sa is in k(a), g{x,a) =
Q{x-sa,a) is irreducible over k{a). 'If we let v be

-a reot of g(x,a) over k(a) and thus a root of R(x)‘

aver k. then by theorem 3.2 k{a,y) = R(y). But y =
ﬂ+sa s0 kR{a,7v) = k(a,8). Thus ¢ is the prmitive
element we were looking for and R(x) is its minimal
polynomial over k.

The algorithm we present for calculating
primitive elements is essentially the same as that
presented by Loos [4]. We differ in allowing the
minimal polynomial for g to have coefficients over
R(«) instead of requiring it to be over k. Loos
does not guarantee, as we do, that the polynomial
‘returned be irreducible. To achieve this result we
must require that the minimal polynomial for 8 be
irreducible over k(a) not just irreducible over k.
In. fact, if we examine our algebraic factoring
algorithm,
which the resultant of two irreducible (over k)
polynomials will factor. This will happen if -and
only if each of the polynomials factors over the
extension field determined by the other polynomial.
By symmetry, 1t is sufficient 1if one . of the
polynomials factors over the other's extension
‘field.

Algorithm primitive_element
input: P,(x) the minimum polynomial for a over k

Qg(x.a) the minimum polynomial for B over
Aa)

output: R(x) the minimum polynhomial for 4 over &k
where k(a,B8) = k(7y).

A(v) is a representation of a in k(y)
B(v) is a representation of g in A(y)

(1) (s.g,R) = sqfr_norm(Q(x,a),P(x))

(2) a=linsolve(gecd(g(y,x),P(x))) [arithmetic over
R{(y) where <~ denotes a root of R(x),
linsolve(ax-b) returns b/al

(3) B=y-s«

(4) return (R(x),7,a,8) }

4, Splitting Fields

The last algorithms to be presented in this
section calculate splitting fields.

we can determine the conditions under.

We restrict.

our considerations to irreducible polynomials.since-

the composite field from many such extensions capn
be found by repeated application of the
primitive_element algorithm, Our basic approach
will be to alternately adjoin a root of .an
irreducible factor of the polynomial to the current
extension field and then refactor the polynomial in
the new extension field. As linear factors are
discovered they are put on a separate list ‘and
their coefficients are updated as the extensiop
field changes. If n is the degree of the eriginal
polynomial, in the worst case n-1 iterations will
occur and the primitive element for the splitting
field will be of degree n!.

The norm computation at step 4.1 serves a dual
purpose. It is used to find a minimal polynomial
for the new extension field at step 4.3.2, but it
is also the first stage for the algebraic factering
performed in steps 4.2 and. 4.3. Thus in the
context of splitting field calculations,
factoring algorithm becomes even-more efficient.

our

222

Algorithm split_field
input: P(x) a polynomial irreducible over k&

output: R.y(x) the defining polynomial for the
splitting field of P(x) and a list of the
roots of P(x) over k(y).

[P(x)]

(2) minpoly = P(x), newminpol = P(x), index = 1},
B=v {v 1s a root of minpoly]

(1) roots =[], polys =

(3) replace polys[index] by polys[index}/{x-8), add
8 to roots, Newfactors =[], k=1

(4) for each Py(x) in polys do
(4.1) (g,s,R) = sqfrnorm(f.’i(x),minpoly)
(4.2) L = factor (R(x))
(_4.3) for each Qj(x) in L do
(4.3.1) £(x,7) = ged(a(x,7),Q;(x)
[f is an irred. factor of P; in R(7)]
(4.3.2) if Peg(Q;)>Deg(newminpol) -then do

(4.3.1.1) newminpol =_Qj_(x),

index=k, new_s=s,

Bpoly(x,7) = f(x,7)
(4.3.3) g(x,7) = g(x,7)/f(X,7)
(4.3.4) f(x,7)

(4.3.5) If Deg(f(x,7)) =1

i

f(x+sy,7)

(4.3.5.1) then add linsolve(f(x,v))
to r_oots .

(4.3.5.2) else add f{x,y) te
’ Newfactors, k=k+l

flet new_y be a root of newminpol, now we operate
in A(new_v)]

{(5) a = linsolve(gcd(minpoly,Bpoly(new_y,x))) '
(6) B = new_vy-new_sa

(7) subst a for ¥ in roots [update for new
extension]

(8) If Newfactors = [] then return
(newminpol;roots)

(9) subst a for ¥ in Newfactors

(10) polys = Newfactors, minpoly = newminpol, 7 =
new_vy, go to 3. 1§

For comparison, we now present a simpler
version of the above algorithm which avoids
performing any factoring. If the splitting field
is actually of degree n! this approach -will
actually be faster since the attempt at
factorization in step 4.2 would always fail and
thus be a waste of time. The essence of the
splitting field calculation is .repeated primitive

element calculations. In the algorithm above
factorization is attempted in the hope that the
degree of the splitting field is much less than n!,
The algorithm below always returns a polynomial of
degree n! known as the resolvent . [2]. The
irreducible factors of this polynomial over k are
all ;of the same degree, all normal, and are all
defining polynomials for the splitting field of
P(x).

Algorithm resolvent
input:-P(x) a polynomial irreducible over 3
output: R(x) a polynomial of degree n!

any 1irreducible . factor of
splitting field for P)

such that
R defines " a
(1) minpoly = P(x), B=y [y is a root of minpoly]
(2) P(x,7) = P(x)}/(x-B)

(3) If degree(P)=0 then Return minpoly

(4) (g.s,R) = sqfrnorm(P(x,y),minpoly)

[Let new.y be a root of R(x),
R(new_v)]

now operate in

(5) « = linsolve(gcd(minpoly,P{new_y,x)))
(6) B = new_y - sa
(7) subst a for y in P(x,y)

{(8) minpoly = R(xX), v = new_y, go to 2. |

8. Rational Function Integration
We now turn to an application of the
algorithms presented in the previous sections. The

problem of the symbolic integration of rational
functions in the context of algebraic manipulation
has been investigated by Manove et al [B8], Moses
(91, Horowitz [3], Tobey [10], and Mack {6]. By
Liouville's theorem the integral of a rational
function can be expressed as a rational function
plus a sum of complex constants times logs of
rational functions.

f R(x)dx = vg(x) + Z cylog(vi(x))
Algorithms for obtaining the rational part of

the integral are well known and ' reasonably
efficient [3], [6], but as far as the author knows,
no one has actually presented practical and

relatively general algorithms for obtaining the
transcendental part. Horowitz limited his
investigation to algorithms for obtaining the
rational part. Manove and by extension Moses' SIN
factored the denominator over the integers ~and
obtained logarithmic terms 1if the factors were
linear or quadratics. Tobey examined the
transcendental problem and concluded "There {s no
generally valid algebraic algorithm for obtaining
in a symbolic form the transcendental part of the
integral of a rational function." He did however
present some algorithms for obtaining the
transcendental part in special cases. He also
presented as an unsolved problem the problem of
obtaining the least degree extension field in -which
the integration can be done.

223

Starting where Horowitz leaves orr, we are
interested in integrating a rational function
S{x)/T(x) where T(x) 1s square free ' and

degree(S(x)) < degree(T(x)). If we were willing to
operate in the splitting field of the denominator
then we could perform a partial fraction expansion

to get S(x)/T(x) = z ci/(x-64) where ®vach cy 1is
an element of the splitting field and 64 is a root
of the denominator. In fact c; is just the residue
of R(x) at @#;. This would lead to an expression
for the integral, but could require operating in an
extension field of very high degree. Thus for the
sake of efficiency and to promote a more
intelligible result, we propose to find the minimum
degree extension field in which the result can be
expressed. We claim that any field which contalns
all the residues is sufficient for expressing the
integral. This is a significant result since the

residues may be contained in a field of much. lower

degree than the splitting field of the denominator.

Our -approach to this problem is first to
constructively find the extension field £
determined by all of the residues of the integrand.
Then we factor the denominator of the integrand
over this field and perform a partial fraction
decomposition. This breaks the original integral
into a sum of integrals of proper rational
functions where each denominator is irreducible
over E. We claim that each integral in the sum can
be expressed as a single log term.

First we will find a simple expression for the
residues. in terms of the roots of the .denominator
T(x). Let & be a root of the square free
polynomial T(x). Since & must then be a simple
root, the residue of S(x)/T(x) at & is S(8)/T'(6).
Since T(x) is square free, the ged(T(x),T'(x))=[.
Thus by the extended Euclidean algorithm we cdn
find polynomials A(x) and B{x) over k- such- that
A(X) T(x) + B(x) T'(x) = 8(x), with the
degree(B(x)) < degree(T(x)). T(9) = 0 implies B(#)
= 8(6)/T'(8). Since # was an arbitrary root of
T(x) we have established ‘the following:

. Lemma $.1: Let S(x) and T(x) be polynomials
over k, where T(x) is square free. Then there
exists a polynomial B(x) over k such that for any
root 0 of T(x) the residue of S(x)/T(x) at .0 is
B(e).

Theorem 5.2: Let 5(x)/T(x) be a quotient of
polynomials where T(x) 1is irreducible over Some
ground field k. If all the residues dare contained
in k then all the nonzero residues are equal.

Proof:
in the lemma.

Let B(x) be the polynomial described

Let the roots of T(x) be 63 for
i=1,...,n. We will operate in the splitting field
E of T(x). Since T(x) is irreducible, its Galois
group. G(E/k) is transitive. and there is. am
automorphism ¢; sending 0; to oj for each j and
leaving k unchanged. Let ¢ = B{6y), the residue. at
@). If we apply ¢ to this equation, the left side
is unchanged since ¢ is in &k and the right side is
mapped to B(6;) since the coefficients of B(x) are
in k. Thus ¢ = B(GJ) for each j and all the
residues are equal. |

Corollary $.3: With S(x) and T(x) as in
Theorem 5.2, f5(x)/T(x)dx is expressible over R.

Proof: Let ¢ be the common residue of the

then the integrand has the partial fraction
decomposition, S(x)/T(x) = ZCI(x-ej)-.
integrates to the following:

S seormxax = zuog(x-ei) =
= ¢ log F(x) . |

Oj,

This
¢ log I(x-64)

All that remains is to transform the integrand
so that the corollary applies. If 6 is any root of
the denominator T(x) then B(#) is the residue. of
S(x)/T(x) at v, therefore the resultant of x-B{y)
and T(y) with respect to y is a polynomial whose
roots are precisely the residues of S(x}/T(x).
Using the algorithms presented in the last sectien
we can compute the splitting field of this
polynomial and therefore the least degree extension
which contains all the residues. Then we factor
the denominator of the integrand over this
extension fileld. If we performed a partial
fraction decomposition on the .resulting rational
function,

integrable.
partial
Since

But the actual computation of the
fraction decomposition is unnecessary.
we know the form of the result as

cilog(fi(x,7)) where the f;'s are the
irreducible factors of the denominator, all we rieed
to be able to do is compute each cj.
B(x) evaluated at any root of fj(x,7). The
resultant(B(x),f;(x,7),x) is the product of B(x)
evaluated at each of the roots of f and thus- equals
cik where k 1is the degree of f. Therefore g(y) =

resultant(y-B(x),f;(x,7),x) is (y-ci)k, and y-cy is
g(x)/Ged(g(x),g*(x)).

Algorithm ratint

input: T(X) a square free polynomial, S5{x) a
polynomial of lower degree tham T(x)
output: R(x) the minimal polynomial for the

splitting field of the residues, 7 such ‘that
R{y) = 0, and I(x,y) the integral expressed in
terms of y.
(1) (A,B) = Extended_Euclidean({T(x),T'(x),5(x))
(2) R{x) =

(3) L =

split_field (resultant(x-B(y).T(y),y)).
alg_factor{T(x),R(x),y)

(4) L = map(Int_log,L) [applies function Int-log to

each element in L}
(5) Return(R{x),y,sum(L)) 1|
Algerithm int-log
input: D(x,y) an irreducible polynomial over k«("y-)
output: c log D(x,7y)
(1) ely) =

(2) ¢ = linsolve{c(y)/Ged{c(y),c'(y))) Lcommon
residue expressed in terms of vy.]

resultant(y-B(x).. D(x,7),%)

(3) return (¢ log D(x,7}) 1

each term in the sum would satisfy the.
hypotheses of the corollary and thus be directly

But c; is

224

On page III-10 of -his thesis, Tobey presents a
rational function which he demonstrates 1is
integrable over Q(sqrt(2)). He asks how one
determines a priori the extension of least degree
in which the integral can be expressed. Using the
MACSYMA [7] system and the ideas presented in this
section, we solve his problem below-

(C1)” INTEGRATE(S(X)/T(X),X):/*x THIS IS TOBEY’S INTEGRAL »/
(o)

/ 13 8 7 6 3 Z

{7X +10X #4X -7X -4X -4X +3X+3
R i L L L e P L e P e PR P e PR DX
] 14 8 7 4 3 2

/XK -2X -2X =2X -4X -X +2X+1

(C2) (ALGEBRAIC:TRUE,TELLRAT(T(C)))$ / LET C BE A ROOT OF
T(X) »/

(€3) B(C):=""(RATSIMP(N(C)/DIFF(D{C).C))); /% B(X) IS THE
POLY COMPUTED IN STEP 1 .OF RATINT »/
(D3) B(C) :=
12 11 10 9 8 7 6 2
€ -C +C -C +C -C -C -2C -2C+2
2
(Cc4) RESULTANT(Y -B(X),D(X),X);
14 13 12 : 11
(D4) 16384 Y - 114688 Y + 315332 Y - 401408 Y
10 9 8 7 6
+ 164864 Y + 121856 Y - 109312 Y - 23552 Y + 27328-Y
5 4 3 2 .
+ 7616 ¥ -~ 2576 Y - 1568 Y -308Y -28Y -1

(CS) SQFR(X); /x SQUARE FREE DECOMPOSITION ISN’T NECESSARY
BUT MAKES STRUCTURE MORE EVIDENT IN THIS EXAMPLE x/

2 7

(D5) (4Y -4v-1)

(C6) MP(X):=""(SUBST(X/2,Y.PART(%.1)));: /% THIS 1§ THE
MINIMAL POLY. FOR THE RESIDUES, MONICIZED FOR
EFFICIENCY. »/

2
(086) MP{X) := -2X-1

(C7) FACTOR(T(X) ,MP(ALG)); /x ALGEBRAIC FACTORIZATION OF
DENOMINATOR OF INTEGRAND x/
7 2 7 2
(D7) (X + (1 - ALG) X =~ ALG X - 1) (X - (ALG - 1) X

+ (ALG - 2} X - 1)

(CB) (F1:PART(X,1),F2:PART(X,2)); /x FI IS ITH FACTOR &/
7 2

(D8) X + (ALG-1)X + (ALG-2)X -1

(C3) TELLRAT(MP(ALG))$ /» NEXT WE CALCULATE RESIDUES OVER
k(ALG) »/

{C10) RESULTANT(Y-B(X).F1.X):
7 6 5

(Di0) 128 Y - 448 ALG Y + (1344 ALG + 672) Y
4 3

+ (- 2800 ALG - 1120) Y + {3360 ALG + 1400) Y

2
+ (- 2436 ALG - 1008) Y + (980 ALG + 406) Y

- 163 ALG - 70

(C11) SOLVE(X.Y);

SOLUTION
ALG
(E11) Y 2 ---
2
MULTIPLICITY 7
(b11) [E1l]

(C12) CL:EV(Y.X);/x C1 IS THE RESIDUE AT ANY ROOT OF F1 x/

ALG
(D12) ---
2
(C13) SOLVE(RESULTANT(Y-B(X),F2,X).Y);
SOLUTION
ALG - 2
(E13)) T,
2
MULTIPLICITY 7
(B13) [E13]
(C14) C2:EV(Y,X); /x C2 IS RESIDUE AT ANY ROOT OF F2 »/
ALG - 2
(D14) - mmeeen
2

(C15) C1xLOG{F1)+C2xLOG(F2); /x FINALLY WE CAN EXPRESS
THE INTEGRAL »/
7 4

ALG LOG(X + (1 - ALG) X - ALG X - 1)

(C16) (ALGEBRAIC:FALSE,SOLVE(MP(ALG)}); /x SINCE MP(X) IS
QUADRATIC, WE CAN EXPRESS THE ANSWER IN RADICALS x/
SOLUTION

(E16) ALG = 1 - SQRT(2)
(E17) ALG = SQRT(2) + 1
(D17) TEl6, E17)
{C18) EV(D15,E17);
(D18)

7 2

(SQRT(2) + 1) LOG(X - SORT(2) X - (SQRT(2) + 1) X - 1)

2

7 2
(SORT(Z) - 1) LOG(X + SORT(Z) X+ (SQRT(2) - 1) X - 1)

2

225

We have shown that any integral can be
expressed over the field generated by the residues
of the 1integrand. Now we must justify our claim
that this field is the minimal one, i.e. we will
show that if an integral can be expressed over a
field &k, then all the residues of the iptegrand lie
in k.

Let'vo(x) + Zcilog(vi(x)) be. the integral of
a rational function, and let all the coefficients
be contained in some field k. Then the integrand

can be expressed as v'p + civ'y/vy. The residue
of v'g 1is zero everywhere, while the residue of
v'/v 1is always a rational integer. Thus all the
residues of the integrand can be expressed as
integer linear combinations of the c¢; and thus must
lie in k. Combined with our earlier result, .we
have that the field determined by the residues is
both necessary and sufficient for expreéssing the
integral.

6. . Extensions and Comments

The algorithms presented in this paper were

desjgned to operate over an arbitrary base figld.

If we are interested in factoring univariate
polynomials over algebraic number fields then we
let our base field be the rational numbers. Given
the capability to factor multivariate polynomial
norms over Q as in [12], we can extend to factoring

‘multivariate polynomials over algebraic number
fields. If we allow our minimal polynomials to have
polynomial ~coefficients then we can factor

polynomials over algebraic function fields.

As algebraic manipulation systems expand their
problem domains, the need for performing operations
with quantities satisfying algebraic relationships
will increase. The basic arithmetic operations can
be performed by merely using the side relations to
keep the expressions reduced. We have extended
factoring to these domains by mapping the problem
to a simpler domain while still preserving its
structure. Then we were. able to Llift the
factorization back to the original expression.
That finding such unramified morphisms can lead to
efficient algorithms for algebraic manipulation has
been amply demonstrated by the recent development
of modular and p-adic techniques [15].

I would 1like to thank Joel Moses, Richard
Zippel, and David Barton for many enlightening
discussions. Work herein was supported in part by
the United States Energy Research and Development
Administration contract E(11-1)-3070.

f1]

£zl

€31

t4]

€8sl

[6]

£7]

(8]

£9]

f10]

1l

[1z]

[13]

f14]

[153

References

Collins, G.E., "The Calcuiation of
Multivariate Polynomial Resultants”,
JACM, vol. 18, no. 4, Oct. 1971, pp.
515-532.

Gaal, L., Classical Galois Theory with
Examples, Markham, Chicago, 1971,
reprinted by Chelsea, New York.

Horowitz, E.,Algorithms for Symbolic

Integration of Rational Functions, Ph.D.

Thesis, U. of Wisconsin, 1970.

Loos, R. G. K., "A Constructive Approach to
Algebraic Numbers", Computer Science
Dept., Stanford University, Palo Alto,
Calif.

MacDuffee, C'., An Introduction to Abstract
Algebra, Dover, 1966.

Mack, D., On Rational Integration, Computer

Science Dept., Utah Univ., UCP-38, 1975.

MACSYMA -Reference Manual. Mathlab Group,
Project MAC, M.I.T., Cambridge, Mass.,
November 1975.

Manove, M., Bloom, S., and Engelman, C.,
"Rational functions in MATHLAB", Proc.
IFIP Conf. on Symbolic Manipulation
Languages, Pisa, Italy, 1968.

Moses, J., "Symbolic Integration: The Stormy
Decade", Communications of the ACM, vol
14, no 8, pp. 548-560, 1971.

Tobey, R.G., Algorithms for
Antidifferentiation of Rational
Functians, Ph.D. Thesis, Harvard, 1967.

van der Waerden, B.L., Modern Algebra, vol 1,
tr. Fred Blum, Frederick Ungar Publishing

Co., New York, 1953,

Wang, P.S. and Rothschild, L.P., "Factoring
Multivariate Polynomials Over the

Intgers,"” Mathematics of Computation, vol

29, no. 131, pp 935-950, 1975.

Wang, P.S., "Factoring Multivariate
Polynomials over Algebraic Number

Fields", Mathematics of Computation, vol.

30, no. 134, April 1976.

Weyl, Hermann, Algebraic Theory of Numbers,
Princeton University Press, 1940.

Yun, D.Y.Y., The Hensel Lemma in Symbolic
Manipulation, Ph.D. Thesis, M.I.T., MAC
TR-138, 1974.

226

