
Timings for random cubic graphs.
We implemented the heuristics in Maple using a simple list of neighbors rep-
resentation for G. Our software will become available in Maple’s
GraphTheory package (see [4]) for Maple 17.

We generated 10 random cubic graphs on n vertices and computed T (G, x, y)
using the MINDEG, VORDER-pull and VORDER-push heuristics. The first
table is for a random vertex ordering. In the second table we relabeled the
vertices using a SHARC ordering. Two timings, the median and average time,
in CPU seconds, are reported. We used an Intel Core i7 desktop computer
with 6 gigabytes of RAM. The data speaks for itself.

MINDEG VORDER pull VORDER push
n ave med ave med ave med
16 0.41 0.36 0.18 0.11 0.22 0.14
18 1.21 1.02 0.53 0.33 0.57 0.45
20 3.90 3.38 1.27 1.02 1.86 1.46
22 14.40 12.07 4.65 3.36 7.22 6.88
24 56.24 32.19 13.84 9.23 25.05 22.46
26 193.34 118.98 41.03 20.07 58.94 24.57
28 199.70 116.32 210.69 75.24

Timings (in seconds) for random cubic graphs with n vertices using random vertex order.

MINDEG VORDER pull VORDER push
n ave med ave med ave med
18 0.68 0.51 0.05 0.03 0.02 0.02
22 7.73 4.68 0.38 0.14 0.10 0.07
26 80.11 38.45 1.24 0.41 0.17 0.12
30 11.10 4.36 0.67 0.37
34 94.58 19.15 2.06 1.29
38 5.40 2.83
42 40.66 8.82
46 87.63 49.03
50 179.64 39.61

Timings (in seconds) for random cubic graphs with n vertices using SHARC vertex order.
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Two edge selection heuristics.
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VORDER-pull

Consider the graph G shown in the figure above. The vertex order heuristic VORDER
picks the edge e = (u, v) where u is the first vertex in the G and v is the first vertex
adjacent to u. In our example u = 1, v = 3, hence e = (1, 3) is chosen. Shown are the
graphs G−e and G / e where when we contracted the edge e = (1, 3) we “pulled” vertex
3 down to vertex 1. So the next edge selected in G / e will be one of the edges (1,4).

There is alternative choice here when constructing G / e. Instead of “pulling” vertex
v = 3 down to u = 1, if instead we “push” vertex u = 1 up to v = 3 we get the
contracted graph shown in the figure below. Observe that the two contracted graphs
G / e in the figures are isomorphic. However, in the vertex order heuristic, the next edge
selected in G / e is (2,4) which is different.
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The SHARC vertex order heuristic.

The truncated icosahedron graph G and its planar dual G∗.
Their Tutte polynomials are related by T (G, x, y) = T (G∗, y, x).

T (G∗) = x31 + 59 x30 + 60 x29y + 1710 x29 + . . . + 160271797870414 y2 + 11551226205884 y

If you look at the vertex ordering in the truncated icosahedron graph above, you will
see a cycle for vertices (1,2,3,4,5,6,1). The next three vertices (7,8,9) form a shortest
path from the cycle back to the cycle, that visually looks like an arc. The next three
vertices (10,11,12) form another shortest path from the set of vertices included so far
back to itself. Repeating this gives an ordering on the vertices that we call a short arc
ordering. It can be computed in linear time using a breadth-first-search in G.

What difference does all this make? It turns out it makes a huge difference. We find that
VORDER-push is much better than VORDER-pull and the SHARC ordering is consis-
tently better than a simple breadth-first-search ordering and much better than depth-first-
search ordering. Why? The paper suggests some reasons but we don’t really know.

In [1] Garry Haggard and David Pearce computed the Tutte polyno-
mial for the truncated icosahedron graph shown in the figure below
right. It took their C++ code about one week to compute it on a
grid of 150 computers. Using the edge selection and vertex order-
ing heuristics presented here we are able to compute it in less than 2
minutes in Maple on a single core of an Intel Core i7 desktop. The
new heuristics appear to work well for all sparse graphs. But first,
what is the Tutte polynomial and why is it of interest?

Definition (Tutte [2]). Let G be an undirected graph, possibly a
multi-graph. Let e be any edge in G. Let G − e denote the graph
obtained by deleting e and let G / e denote the graph obtained by
contracting e, that is, first deleting e then joining e’s vertices.

The Tutte polynomial, denoted T (G, x, y), is defined by

T (G) =



1 if G has no edges,
x T (G / e) if e is a cut-edge in G,
y T (G− e) if e is a loop in G

T (G− e) + T (G/e) otherwise.

It follows that T (G) is a bivariate polynomial in x and y with inte-
ger coefficients. The coefficients measure connectivity of G. The
Tutte polynomial is of interest because the chromatic, flow and re-
liability polynomials are special cases. But since computing those
polynomials is NP-hard, computing the Tutte polynomial must also
be NP-hard.

The definition gives a recursive algorithm for computing T (G) known
as the edge-deletion-contraction algorithm. The recursive calls in
T (G−e)+T (G / e) imply an exponential time complexity for com-
puting it. If, however, we remember the Tutte polynomial for each
recursive call in the computation tree, it may happen that we en-
counter a graph that we have already seen which could reduce the
cost, possibly to polynomial time, for some families of graphs. In
[3] Haggard, Pearce and Royle use the graph isomorphism test from
Brendan Makay’s nauty package to implement this idea. Roughly
speaking, for random cubic graphs, this doubles the size of the
graph they can handle in a given amount of time.

Which edge in G should we pick? Which choice will more likely
generate graphs that we have seen before in the computation tree?
In [3] Haggard, Pearce and Royle propose two heuristics called
MAXDEG and VORDER. By trying variations on their VORDER
heuristic we have found one that works much better. Moreover, it
is sufficient to test for identical graphs in the computation tree only
– so no graph isomorphism test is needed.
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