A new edge selection heuristic for computing the Tutte polynomial.
S F U Michael Monagan. Department of Mathematics, Stmon Fraser University, British Columbia. FPSAC 2012, Nagoya, Japan.

Two edge selection heuristics. Timings for random cubic graphs.
In [1] Garry Haggard and David Pearce computed the Tutte polyno-

mial for the truncated icosahedron graph shown in the figure below S S 5 We implemented the heuristics in Maple using a simple list of neighbors rep-
right. Tt took their C++ code about one week to compute it on a 1 | |) resentation for G. Our software will become available in Maple’s
grid of 150 computers. Using the edge selection and vertex order- VORDER-pull GraphTheory package (see [4]) for Maple 17.
3 4 3 4 4
G G—e Gle

ing heuristics presented here we are able to compute it in less than 2 We generated 10 random cubic graphs on n vertices and computed 7'(G, x, y)

minutes in Maple on a single core of an Intel Core 17 desktop. The using the MINDEG, VORDER-pull and VORDER-push heuristics. The first
new heuristics appear to work well for all sparse graphs. But first, Consider the graph G shown in the figure above. The vertex order heuristic VORDER table 1s for a random vertex ordering. In the second table we relabeled the
what 1s the Tutte polynomial and why is 1t of interest? picks the edge e = (u,v) where u is the first vertex in the G and v is the first vertex vertices using a SHARC ordering. Two timings, the median and average time,

adjacent to u. In our example © = 1, v = 3, hence e = (1, 3) is chosen. Shown are the in CPU seconds, are reported. We used an Intel Core 17 desktop computer

Definition (Tutte [2]). Let G be an undirected graph, possibly a

multi-graph. Let e be any edge in G. Let G — e denote the graph graphs G — e and GG / e where when we contrac?ted the ed.ge e = (1,3) we “pulled” vertex with 6 gigabytes of RAM. The data speaks for itself.
obtaine d by deleti n o ¢ and let .G /¢ den O.t § th e graph opt ained by 3 down to vertex 1. So the next edge selected in GG / e will be one of the edges (1,4). VINDEG [VORDER pull[VORDER ush
contracting e, that 1s, first deleting e then joining e’s vertices. There is alternative choice here when constructing GG / e. Instead of “pulling” vertex " ave med ave med ave med
The Tutte polynomial, denoted 7'((, =,), is defined by v = ddowntou = 1, if instead we “push” vertex v = 1 up to v = 3 we get the 16 041 036 018 011 022 0.14
contracted graph shown in the figure below. Observe that the two contracted graphs 180 121 102 053 033 057 045
B if G has no edges, GG / e in the figures are isomorphic. However, in the vertex order heuristic, the next edge 0 390 338 127 102 186 1 46
T(G /) if ¢ is a cut-edge in G, selected in & / e is (2,4) which is different. 22 1440 12.07 465 336 722 6.88
TG) = « yT(G — e) if ¢ is a loop in G S S S 24| 56.24 32.19 13.84 9.23] 25.05 22.46
: 1 7 1 o) 9) 26193.34 118.98 41.03 20.07 58.94 24.57
TG —e)+T(G/e) otherwise. @ VORDER-push 28 199.70 116.32 210.69 75.24
It follows that T'(G) is a bivariate polynomial in z and y with inte- 3 4 3 4 3 4 Timings (in seconds) for random cubic graphs with n vertices using random vertex order.
ger coefficients. The coefficients measure connectivity of G. The G G —e Gle
Tutte polynomial 1s of interest because the chromatic, flow and re- L
liability polynomials are special cases. But since computing those The SHARC vertex order heuristic. n h:igDi:l(e}d V(;\II{eDERrIr)ll;g VO?VZER I:EZE
polynomials 1s NP-hard, computing the Tutte polynomial must also - 18 068 051 0.05 003 002 002
be NP-hard. _H_ﬁ _ 22 7.73 468 038 0.14 0.0 0.07
The definition gives a recursive algorithm for computing 7'(G) known :ﬂ 26/80.11 38.45 124 041 0.17 0.12
as the edge-deletion-contraction algorithm. The recursive calls in e _*,3{ 30 11.10 436 0.67 0.37
T(G—e)+T(G / e) imply an exponential time complexity for com- / : 34 94.58 19.15 2.06 1.29
puting it. If, however, we remember the Tutte polynomial for each /15*~3f’ ‘Ef'ﬁm-s{ i 38 540 2.83
recursive call in the computation tree, it may happen that we en- Ny §1_43? R 42 40.66 8.32
counter a graph that we have already seen which could reduce the \ ,ﬁL }?-45145 46 87.63 49.03
cost, possibly to polynomial time, for some families of graphs. In] H\H,,y.h / 50 179.64 39.601
[3] Haggard, Pearce and Royle use the graph isomorphism test from \ f____.ll:l. Timings (in seconds) for random cubic graphs with n vertices using SHARC vertex order.
Brendan Makay’s nauty package to implement this idea. Roughly i
speaking, for random cubic graphs, this doubles the size of the / References
graph they can handle in a given amount of time.)
Which edge in G should we pick? Which choice will more likely Tholt Tutte colynomials are e by TG aroy Pl o). [1] Gary Haggard, David Pearce, and Gordon Royle. Code for Computing
. . Tutte Polynomials. homepages.ecs.vuw.ac.nz/ "djp/tutte
generate graphs that we have seen before in the computation tree? T(G*) = 231 + 592 + 6022y + 171022 + ... + 160271797870414 y* + 11551226205884 y
In [3] Haggard, Pearce and Royle propose two heuristics called [2] William Tutte. A contribution to the theory of chromatic polynomials.
MAXDEG and VORDER. By trying variations on their VORDER If you look at the vertex ordering in the truncated icosahedron graph above, you will Can. J. Math. 6 (1954) 80—91.
heuristic we have found one that works much better. Moreover, it see a cycle for vertices (1,2,3,4,5,6,1). The next three vertices (7,8,9) form a shortest [3] Gary Haggard, David Pearce, and Gordon Royle. Computing Tutte Poly-
1s sufficient to test for identical graphs in the computation tree only path from the cycle back to the cycle, that visually looks like an arc. The next three nomials. Trans. on Math. Software 37:3 (2011) article 24.
— 50 no graph isomorphism test is needed. vertices (10,11,12) form another shortest path from the set of vertices included so far [4] Jeff Farr, Mahdad Khatarinejad, Sara Khodadad, and Michael Monagan.
back to itself. Repeating this gives an ordering on the vertices that we call a short arc A Graph Theory Package for Maple. Proceedings of the 2005 Maple Con-
ordering. It can be computed in linear time using a breadth-first-search in G. ference, pp. 260-271, 2005.

What difference does all this make? It turns out it makes a huge difference. We find that
VORDER-push 1s much better than VORDER-pull and the SHARC ordering 1s consis-
tently better than a simple breadth-first-search ordering and much better than depth-first-
search ordering. Why? The paper suggests some reasons but we don’t really know.

—~
Maplesoft

Mathematics ¢ Modeling « Simulation

