
MATH 895 Assignment 1, Summer 2019

Instructor: Michael Monagan

Please hand in the assignment by 5pm Monday May 20th.
Late Penalty -20% off for up to 24 hours late. Zero after that.
For Maple problems, please submit a printout of a Maple worksheet containing Maple code
and the execution of examples.

References: Sections 4.5–4.9 of Geddes, Czapor and Labahn and sections 8.2,8.3,9.1 of von
zur Gathen and Gerhard.

Question 1 An iterative FFT (15 marks).

Last semester you coded the FFT recursively. You can also use my FFT1 C code that I gave
out in class as a starting point.

Convert your recursive Maple code into an iterative code in Maple. You will need to
accomplish the bit-reverse permutation separately. Check that your algorithm is correct by
checking that

FFT−1(FFT (A, ω), ω−1) = nA

for a problem for n = 16 of your choosing modulo p = 97.

Question 2 Analysis of the FFT (5 marks).

Let K be a field and ω = i be a primitive 4’th root of unity in K. Let a = a0+a1x+a2x
2+a3x

3

and A = [a0, a1, a2, a3] ∈ K4. The FFT computes F = [a(1), a(ω), a(ω2), a(ω3)]T . This
polynomial evaluation can be expressed as an affine transformation. Let V4 be the 4 × 4
Vandermonde matrix

V =


1 1 1 1

1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

 =


1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i


Then the FFT computes V4A

T , that is, F = V4A
T . For both FFT algorithms (FFT1 and

FFT2) factor the matrix V4 into a product of three matrices so that V4 = UVW where one
of the matrices will be a permutation matrix. The two factorizations explain how the two
algorithms both compute V4A = F . Check that the two permutation matrices are inverses
of each other.

1



Question 3 Fast Division (15 marks)

Consider computing the quotient of a ÷ b in F [x]. To use the fast method we need to
compute f−1 to O(xn) where n = deg a − deg b + 1 and f = br. Write a Maple procedure
FastNewton(f,x,n,p) that computes f−1 to O(xn) for F = Zp using a Newton iteration.
Use Expand(...) mod p; for the polynomial multiplications so you get Maple’s fast mul-
tiplication. To make the Newton iteration efficient when n is not a power of 2, compute
y = f−1 recursively to order O(xdn/2e). To truncate a polynomial b modulo xn you could use
rem(b,x^n,x). Use convert(taylor(b,x,n),polynom) instead which is more efficient.

Test your algorithm on the following problem in Zp[x].

> p := 11;

> f := 3+x+4*x^3+x^5;

> FastNewton(f,x,6,p);

10x5 + 7x4 + 10x3 + 9x2 + 6x + 4

Now write a Maple procedure FastQuo(a,b,x,p) to compute the quotient of a÷ b in Zp[x]
fast. Test your procedure on the following inputs

> p := 9973; d := 1000;

> while d < 10^5 do

> a := Randpoly(degree=2*d-1,x) mod p;

> b := Randpoly(degree=d,x) mod p;

> q := CodeTools[Usage]( FastQuo(a,b,x,p) );

> if q <> Quo(a,b,x) mod p then print(BUG); fi;

> d := 2*d;

> od:

You will need to compute reciprocal polynomials efficiently. Let n be the degree of the f .
To compute the f r efficiently use fr := expand( x^n*subs(x=1/x,f) );

Question 4 Complexity of Fast Division (5 marks)

Let f ∈ F [x] and let D(n) be the number of multiplications in F for computing f−1 as power
series to order O(xn) using the Newton iteration. Let M(n) be the number of multiplications
in F that your favorite multiplication algorithm takes to multiply two polynomials of degree
n− 1 in F [x]. For n = 2k explain why

D(n) = D(n/2) + M(n) + M(n/2) + cn

for some constant c > 0. Now, using D(1) = d for some constants d > 0, solve this recurrence
relation, show that

D(n) < 3M(n) + 2cn + d.

Use the fact that 2M(n/2) < M(n), i.e., M(n) > O(n).
Thus conclude that the cost of the Newton iteration is roughly 3 multiplications.

2


