MATH 895, Assignment 5, Summer 2019

Instructor: Michael Monagan

Please hand in the assignment by 5pm on Friday July 5Hth.
Late Penalty -20% off for up to 72 hours late. Zero after that.
Please submit a printout of a Maple worksheet containing Maple code and output.

Download and read the paper “Sparse Polynomial Arithmetic” by Stephen Johnson. Notice
that Johnson’s paper assumes univariate polynomials only. One can map a multivariate
polynomial f(x,y, z) into a univariate polynomial g(z) by means of the Kronecker substitu-
tion: g := subs(y = 27, 2z = 2%, f) for sufficiently large 7, k in such a way that one can recover

f(z,y, z) from g(z).

Let A,B € Q[z,y,z2,...] and let C = A x B and let @ be the quotient of C' divided B.
Represent a polynomial as a Maple list of terms sorted in descending graded lexicographical
order. Represent each term in the form [c, e] where ¢ € Q is a coefficient and e, the exponent
vector, is encoded as an integer as follows: the monomial 2%y’ 2* with exponent vector [i, j, k]
would be represented as the integer e = (i + j + k) B* +iB? + jB + k where B = 2% bounds
the total degree d of any monomial that appears in the multiplication/division algorithm.

Implement the following Maple procedures where X is a list of variables.

A
a :

Maple2SDMP(a,X,B);
SDMP2Maple (A,X,B);

E.g. A := Maple2SDMP(a, [x,y,z],B) converts a Maple polynomial a(z, y, z) into the SDMP
data structure and SDMP2Maple (A, [x,y,z]) converts it back. Note, to convert an integer F
to base B in Maple use convert(E,base,B); Note, to sort the terms in a polynomial you
can use the sort command. Now implement the following three algorithms.

1 Classical repeated merging: f x g = ((fig + fo9) + f39) + ... + fmg where m = #f.
2 Johnson’s m-way merge using a heap: fx g=> ", f; X g.

3 Divide and conquer multiplication: f x g = (fig+ ...+ frg) + (fxa19 + ... + fng)
where k = |m/2]. Use merging for +.

Execute your algorithms on the following sparse problems

(u,v,w,x,y,2];

randpoly (X,degree=10,terms=5000) :
randpoly(X,degree=10,terms=50) :
expand (a*b) :

nops(a), nops(b), nops(c);

X
a :
b
c

V V V V V

4977, 49, 127191

> d := degree(a)+degree(b);
20
> B := 1000:
> A := Maple2SDMP(a,X,B):
> B := Maple2SDMP(b,X,B); # show your data structure for this one
> C := Maple2SDMP(c,X,B):
> H := MULTIPLY(A,B): evalb(H=C);
> H := MULTIPLY(B,A): evalb(H=C);

You may simply use B = 2!V for this experiment.

Compute and print (i) N = the number of monomial comparisons each algorithm makes, (ii)
M = the number of coefficient multiplications each algorithm makes and (iii) the quantity
S = N/M which measures the monomial comparisons relative to the coefficient arithmetic
cost. Now, estimate the theoretical number of monomial comparisons that the three algo-
rithms should make for these inputs. Compare these with the actual values.

For the heap operations you may use Maple’s heap package. See 7heap.

To count the number of comparisons done in the heap insertions and extractions, use a global
variable like this:

> less := proc(a,b) global N; N := N+1; evalb(a[2]<b[2]) end;
> H := heap[new] (less);
>N :=0; # don’t forget to initialize it

In several places you will need an array for a result with an unknown number of terms. Use
a Maple hash table and keep a counter for how many terms are in the table. E.g.

> C := table();

> C[1] := 3xx;

> C[2] := 2%x"2;

>n = 2;

> C[2] := C[2]+3*x"2;

> ¢ := [seq(C[il,i=1..n)]; # convert to list

