MATH 895, Course Project, Summer 2019
Black Boxes and Zippel’s Sparse Interpolation

Instructor: Michael Monagan
The project is worth 40% of your final grade.

Let f € Z|xy, 2o, ..., x,] be represented by a black box B such that given a prime p and
an evaluation point a € Zj the call B(a, p) outputs f(a) mod p. The goal of this project is
to design collection of operations on black boxes and implement them in Maple. All of the
algorithms will be probabilistic. We will pick p sufficiently large so that they work with high
probability (w.h.p.). Implement the following routines in Maple.

1.

2.

B(a,p) outputs f(«) mod p.

degBB(B,n) outputs deg(f) the total degree of f w.h.p.
degBB(B,n,i) outputs deg(f, z;) the degree of f in x; w.h.p.
If f =0 then output —1.

suppBB(B,[z1,. .., z,]) outputs the support of f i.e. the set of monomials of f w.h.p.

sintBB(B,[z1, ..., z,]|) outputs the polynomial f w.h.p., i.e. interpolates f from the
black box and recovers the integer coefficients of f using Chinese remaindering.

Notes

e To implement this in Maple the black box will be represented by a Maple procedure

that computes f. It might look like this
proc(alpha::list(integer), p::prime) ... end.

A simple test example could be

> B := proc(alpha::list(integer), p::prime) local f;
> f = 3*x72-5*x¥yxz+11*z2"3;

> Eval(f,{x=alpha[1l],y=alphal[2],z=alpha[3]} mod p;
> end:

e To measure the efficiency of the algorithms, each of degBB, suppBB, sintBB should
print out the number of calls to the black box B that it makes. To do this use a global
counter like this

> B := proc(alpha::list(integer), p::prime)
> global CNT;

> CNT := CNT + 1;

>

> CNT := O0; # don’t forget to initialize it

e For the procedure suppBB use Zippel’s sparse interpolation method. Use the degBB
procedure to determine deg(f,x;) for 1 < i < n first. For the sparse interpolation step,
pick € Z;; at random and compute

F(B],B3,....B)) mod p for 1<j <t
and solve the shifted Vandermonde system.

e Zippel’s sparse interpolation method first evaluates the first variable x; at some point
p1 then interpolates f (51, za, ..., x,) recursively. After this is done it uses the support
of f(B1,22,...,x,) to obtain f(B;,xa,...,x,) for i = 2,3,...,deg(f,z;). Given a
blackbox B that computes f(«) mod p, to create a black box C for the recursive call
in one less variable, use

betal := ...;

C := proc(alpha::integer,p: :prime)
B([betal,op(alpha)],p)

end:

V V V V V

So the C procedure takes as input a list of n — 1 values [y, ..., @, 1] for xo, ..., z,, and
calls B with n values [, aq, ..., an_1].

After you have interpolated g := f(/1,xs,...,2,) mod p you will have a Maple poly-
nomial and you will need to get the support of g, that is, the monomials in g. Use the
coeffs command like this

coeffs(g,indets(g),’S’);
[S]; # support of g

vV Vv
0 Q
Il

e Suppose

S = Support(f(B1, 23, -, 20), {2, ., 2a}) and T = Support(f, {za, .., 2a}).

So T is the true support and S is the support at x; = ;. For example, if f(z,y,2) =
r?yz — dyz + 3zy then T = {yz,y} and S = Support(f(2,z,y)) = {y}.

What is the probability that S is wrong, that is, S # T7
Use the Schwartz-Zippel Lemma to give a precise bound.

Design a probabilistic test to check if S =T7
What is the probability your test outputs true but S # 17

e For the procedure sint BB you need to first determine the support of f then solve for
the coefficients of f. Use additional primes and Chinese remaindering to determine the
coefficients. For each additional prime ¢ assume the support obtained using the first
prime p is the support of f so that you can use a Sparse Interpolation to solve for the
coefficients mod gq.

e Zippel’s sparse interpolation method first evaluates the first variable x; at some point 5,
at random from [0, p) then interpolates f(f1, s, ..., x,) recursively. Then to compute
f(Bi,xa, ..., x,) for i = 2,3, ... we use sparse interpolation.

e We need a good application. For the application suppose we are given an m X m matrix
A of polynomials in Z[zy,...,z,| and let f(xy,...,x,) = det A. Program your black
box B to compute det(A(ay, ..., a,) mod p) mod p.

Test your code working for the following three matrices. The first is a 3 by 3 matrix
in three variables a, b, c. The second is a 6 by 6 matrix in 7 variables a,b,c,d, e, f, z.
The third one forces you to use Chinese remaindering. The matrix is the same as the
second but I've set a = 11 so the variables are b, ¢, d, e, f, z. Use 31 bit primes.

> with(LinearAlgebra) :
> A := Toeplitz([a,b,d],symmetric);

a c
A=115b
c a

> A := Matrix(6,6,
[[8xa~3, 4*a~4-4xa~2xd"2+4*a~2xf~2, 0, 0, —-4xa”~4+4*xa~2%b~2-4*xa"2xc~2, 0],
[0, 8*a~3, 4*a”4-4xa”2%b"2+4*xa”2*c”2, -8*a"3*c”~2, 0, 0],
[0, 0, 8%a~3, -4xa~4+4xa”2%b~2-4%a~2%c~2, 0, 0],
[-4xa~4+4*a”~2*%d"2-4*a"2xf~2, -8*a~3*xf~2, 0, O,
Axa”~3xc"2-4%a”~3*%e"2+4*xa " 3xf "2, 48%a”~2x*z],
[0, 0, —-4xa~4+4*a~2xd"2-4*a ~2xf"2, 4*xa~3xc"2-4*a”~3xe"2+4*a"~3*xf~2, -8*a~3, 0],
[0, 0, O, 48*a~2*xz, 0, -8*a~3]]);

> a := 11; # same matrix as above
> A := Matrix (6,6,
[[8*a~3, 4*a”4-4*xa~2*%d"2+4*xa~2+xf"2, 0, 0, -4*a”4+4xa”2*%b"2-4*xa"2*c”2, 0],
[0, 8*%a~3, 4xa~4-4xa”~2%b~2+4*a"2*xc”2, -8*a~3*c~2, 0, 0],
[0, 0, 8%xa"3, -4*a~4+4%a”2*b~2-4%a"2*c”~2, 0, 0],
[-4*a~4+4xa~2xd"2-4*a”2*xf"2, -8%a~3xf~2, 0, O,
4*xa”~3*xc"2-4%a"3%e " 2+4xa"3xf"2, 48*a”2x*z],
[0, 0, -4xa”~4+4*xa~2*xd"2-4*a"2+xf"2, 4xa~3xc”2-4*a”3*e"2+4*a"3*xf"2, -8*a”~3, 0],
[0, 0, O, 48xa~2*xz, 0, -8*a~3]1);

What to hand in?

To present your work please write a report in LaTeX. The report should be 10 to 12 pages
(12pt font, 1 inch margins) plus any appendices that you wish to include. You should
explain selected details of the algorithms and present any data and/or examples that you
wish to show. Submit also a printout of a Maple worksheet showing your Maple code and
demonstrating that the code works correctly.

Assessment

Code demo (10 marks) Monday July 29th
Final report (15 marks) and final code (15 marks) due 5pm August 16th.

