PROBABILISTIC ALGORITHMS FOR
SPARSE POLYNOMIALS

Richard Zippel*
Laboratory for Computer Science
Massachusctts Institute of Technology
Cambridge, Mass. 02138/USA

1. Introduction.

Modular approaches [1] to algebraic algorithms, such as the GCD, have been very
usclul in cases where there arc very few variables. These algorithms have, unfortunately,
an exponential worst case behavidr since they need as many as {d 4 1)Y independent
evaluations for a problem with v variables of degree d in each variable. The Hensel lemma
was successully used in many GCD and factorization problems [3, 4, 7, 9, 10] when the
problems were sparse. The Henscl lemma approach exhibits exponential behavior at “bad
zero" cases that correspond to a zero derivative in the Newton'’s method analogue. This
occurs when substituting zero for one or more variables destroys too much information
and reduces the corresponding Jacobian to zero. In such cases it is common to make a
linear substitution, such as y -+ 3 for y, in order to avoid the bad point. The substitution,
however, causes a large growth in the size of the revised problem. Thus the Hensel lemma
based algorithms tend to run out of space relatively carly on bad zcro problems.

This paper discusses a probabilitistic tcchnique for avoiding the exponential behavior
of the modular and Hensel algorithms. This technique's expected running time is a poly-
nomial in the number of terms. Since the resulis for GCD and factorization can be checked
by division, one is guarantced to obtain the correct answer, if need be, by performing the
calculation twice. The probability of getting incorreet results can be made so low, however,
that no such backtracking has been required in any of our tests so far. As cxpected, the
experimental results of the algorithms verify the fact that it is exponentially [aster than
any of the existing algorithms in their worst cases, and its performance is a polynomial
function of the sizc of the final answer in all cascs. The probabilistic algorithm presented
here will be a variation of the modular GCD algorithm. In {11}, we present a formulation
of Hensel's lemma that is somewhat more general than the one in current use and our
probabilistic analogue to it. Here, we shall only present the modular algorithm. In [11] we
shall also discuss how our idcas can be uscd in computing determinants, resultants and
solutions of both lincar and non-linear cquations. Except in the latter case, it is relatively
difficult to check the answers, so a small probability of crror is possible. But as our analysis
shows, thal probability can be made as low as one pleases. In [11], we also discuss the
usc of our main idea in solving the “intermediate expression swell” problem in those cases
where the form of the final answer is known in advance.

* This work was supported, in part, by the United States Department of Energy under Contract Number
E(11~1)-3070 and by the National Aeronautics and Space Administration under Grant NSG 1323.

217

We should also note that Paul Wang, in his Enhanced EZ GCD algorithm (8], uscs
ideas similar to those we use. Although the EEZ GCD algorithm will often run faster than
ours, there has been no analysis of Wang's heuristics that indicates they are effective in
all cases. There also seems to be empirical evidence that the EEZ GCD algorithm can
still suffer from the “bad zero" problem. Furthermore, it is not clear how to extend his
approach to problems other than GCD or factorization.

The basic idea of our probabilistic approach is as [ollows: We substitute randomly
chosen, large integers for all but one variable in the problem. The solution is built up by
interpolating for one variable at a time. Our main probabilistic assumption is that when
a coefficient has been determined to be zero somewhere in the interpolation process it is
assumed to be zero everywhere. Thus, one need never compute more terms then there will
actually be in the answer. The algorithm resorts to solving ¢ linear equations at each level,
where ¢ is the number of terms at that level. Thus its cost is asymptotically cubic in the
number of terms.

2. Sparsc Modular Algorithm.

All modular algorithms have basically the same form—a polynomial is interpolated
from its value at a number poinis. We will call this polynomial the goal polynomial of the
algorithm. The goal polynomial is assumed lo involve v variables. Each variable appears
to no higher degree than d in the goal polynomial. The goal polynomial will be denoted
by P{X1,..., Xy)-

Therc are {d 4 1)” independent cocfficients in P. An algorithm that has no probabil-
istic aspects needs at least {d -+ 1) “points” worth of information to determine these
coeflicients. Just looking at these points requires time exponential in the number of vari-
ables. Throughout this section I’ is assumed to be sparse, and has ¢ terms (t < (d - 1)Y).

2.1. Overview of Sparse Modular Algorithm,

The sparse modular algorithm begins by choosing a starting point for the interpolation,
(10, .. ., ®yo). It then preduces the sequence of polynomials,

Py = P(Xi,230,+ .-, 2w);
Py == P(Xl, X2, 3050 s ,a:uo),

Py = P(X}, Xa,..., Xy).

Note that P is a univariate polynomial in Xj. The cocflicient of Xf in P 1s a polynomial
AXe, ..., X,). I P is sufficiently sparse there will be certain powers of X that do not
appear in P;. Assume that the Xi‘ term is one of thosc terms that is not prescnt. There
are two possible explanations why Xf did not appear in . Either fi is identically zero or
JSilz1o, - - ., zuo) is cqual to zero. If the starting point (210, ..., Zvwo) is chosen al random then
the probability that fi(z10,...,2.0) is zero is extremely small. Thus the probability that J

218

is identically zero is quite large. The key idca in this algorithm is to assumc that X% does
not appear in P; i.e., f; is identically zero. Thus it is assumed that the cocflicient of every
monomial involving X7¥ is known, and that it is zero.

This information is used to construct P. The same reasoning can be applied to cach
monomial in X] and X3 that does not appear in P,. Since there arc at most ¢ terms in any
of the P, almost all of the terms will be zero the number of coefficients that we don't know
is small.

We will demonstrate this algorithm when P is a polynomial in 3 variables, P(X, Y, Z).
As usual, we assume that P is a sparsc polynomial with ¢ terms (t « (d 4-1)¥, v == 3).
Whenever we say “pick z;" we will mean pick an integer z; randomly from a sct § that has
at least B distinct elements.” Pick y and 2z randomly. We now pick a4y, ..., 24 and examine
the values of P at the points (z;, yo,4). These may be interpolated to give a univariate
polynomialin X, namely P(X, yo, %). So far nothing probabilistic has entered the algorithm.

We now assume that if some power of X had a zero coeflicient in P(X, yo,20) it will
have a zcro coefficient in P(X,Y,Z). Pick a y. From P{X, 1, %) we know that a number
of the coefficients of P(X,y;,%) arc zcro. The only cocllicients that need fo be deter-
mined are the non-zero ones. There can be no more than { of these unknown cocflicients.
They can be determined by solving a system of lincar equations. Only the values of
P(zo, y1,%), - - -, P(&1, y1,20) will be needed to set up this system of equations.

This procedure may be repeated until we have determined the sequence of polynomials
P(X, Yo,%)s -+, P(X, Y4, 2). Pick a monomial in X which appears in each of these polyno-
mials. For simplicity we will assume that it is the lincar term. The linear term (in X) of
P(X,Y,#) is a polynomial in Y of degree at most d. Call this polynomial J(Y). From the
d -+ 1 polynomials we have computed we can determine the values of YY) at yo, ..., Y-
Again using the usual interpolation methods we can determine f(Y) from this information.
Doing this with all the cocflicients of the P(X, 31, %) we can determine P(X, Y, %)

Now that we have P(X, Y, %), it is only natural fo try to compute P(X, Y,) for a new
zi. This can be done in a manner almost identical with that used carlicr. We know that
the monomials which appear in P(X,Y,z) will have non-zero cocflicients in P(X, Y,Z).
We assume that none of the X*Y7 monomiuls in P are missing. There are at most ¢ of
these monomials, and thus at most? unknown cocflicients to be determined. Picking ¢ pairs
of values (z1,91), - ., (1, ¥) and computing P(z;, y;,1) we can sct up a system of lincar
equations in the unknown coeflicients. Solving this system we have P(X, Y, 2). Repeating
this procedure we will finally determine (X, Y, 2;). By repealing the slandard interpolation
scheme we will finally arrive at P(X,Y,Z).

There are {wo essentially different types of interpolation going on in this algorithm.
The first time we iry o generate a polynomial in X, it is not known what its structure
is and thus the interpolation is preformed as if the polynomial were dense. This we call a
dense interpolation. {Actually the polynomialin X can be read off from its values using the
Lagrange interpolation formula, but this gives only a slight increasc in efficiency.) Now a

*The set ¥ is usually chosen to be the interval [0,B — 1]. Thoughout this section lower case symbols will
denote integers chosen at random while uppercase symbols will be reserved for variables.

219

number of sparsc interpolations are done {or different values of ¥ to get more polynomials
in X. The coeflicients arc then combined via a dense interpolation to give polynomials
in Y. The algorithm proceeds in this manner. The first polynomial produced involving
a particular variable is done via a dense interpolation. The structure determined by the
dense interpolation is then used to produce a skeleton for the polynomial. This skeleton is
used as the basis for a scries of sparse interpolations which are done to sct up the points
for a new variable.

2.2. Gencral Formalism of Sparse Modular Algorithm.

In this section we will present a precise form of the sparse modular algorithm that
will also aid in the analysis of the algorithm. Algorithm D makes no assumptions about
the sparsity of the goal polynomial. It uses the Chinese remainder algorithin to produce a
univariate polynomial over a field. This is the densc lifting stage mentioned in the previous
section.

Algorithm D. Given two sets of rational integers {py,...,px } and {my,...,mg}, it returns
a polynomial f{z) such that f{p) = m;for 1 < i <k

D1. [Initialize] Set f(z) — my, ¢(z) (z — p1).

D2. [Loop] Fori==2,...,k do step D3.

D3. [Determine new f] Scb f{z) — f(z) -+ qlps) " q(z){mi — [(ps)) and ¢(z) « (z — pi)g(z).
D4. [End] Return f{z).

It is important to note that even if the goal polynomial for algorithin D-is very sparse
the intermediate results can be completely dense. The full sparse modular algorithm alter-
nates between stages of dense interpolations using algorithm D above, and stages of sparse
interpolation in algorithm 8 below.

The sparse interpolation algorithm nceds a dala structure to indicate which terms are
known to be zero. Since there are fewer terms which are likely to have nonzero coeflicients
than terms with zero coeflicients, we will keep track of the nonzero terms. A monomial of
the form Xt - X8 will be represented by the v-tuple (cy, ..., ¢e,). A skeletal polynomial S,
is understood to be a sct v-tuples where each clement of S represents a nonzero term in
the goal polynomial.

After a skeletal polynomial is produced we will want to determine what its cocflicients
are. This will be done by solving a system of linear equations. To simplify the notation
a bit we will adopt the following convention. Assume a skeletal polynomial S contains
¢ terms. We will assumc that cach skeletal polynomial has associated with it ¢ symbols
which will represent the cocflicients of the monomials given by S. Denote these symbols by
81, ..., 5t where the subscript, 1, is associated with the exponent vector (¢, ... ,€iv)- Then
we define

Sla, . .., ay) = siafie a4 spaPte @V oo - gafti - -alby.

The sparsc modular algorithm can be specified as follows.

220

Algorithm 8 takes a set of variables { Xi,..., X, }, adegree bound d, a function F(Xy, ..., Xy)
and a starting point (ai,...,a,) as arguments. It is assumed that the values F' returns
are the values of some polynomial of at most v variables and of degree at most d in each
variable. The starting point is assumed to be a good stating point. The algorithm returns
a polynomial P(X,...,X,), where each variable occurs to degree no more than d and
P(by,... b)) =TF{b,...,b,) for all integers by

81. [Initialize] Set S« {(0)} and pg + aq.

82. [Loop over variables] For ¢ == 1 thru v do 83 thru S8,

S3. [Iterate d times] For j =1 thru d do 54 thru S7.

84. [Initial lincar cquations] Pick rj, sct L to the empty list, set ¢ to the length of S.
85. {Tteratc t times] For k=1 thru ¢ do S6.

S6. [Set up liner cquations] Pick a random {i—1}-tuple Ay, and add the the lincar equation
S(Ag) = F(Ak, 15, @150 -y 00),,

57. [Solve] Solve the system of cquations L and merge the solution with & to produce a
polynomial p,(X1,..., Xi—1).

88. [Introduce X;] For each monomial in § pass the corresponding coeflicients from
Do -+, pa and a,,11,. .., 75 to algorithm D. This will produce ¢ polynomials which can
be merged with S. Set py o this new polynomial and S to its skeletal polynomial.

89. [Done] Return pg.

There is one point at which caution should be exercised in implementating this pro-
cedure. The first time through the 4 loop the lincar cquations which are set up will be
trivial since there is only one unknown. There is a chance that the lincar equations that
are developed will not be independent. If this happens then it is necessary to run step 58
until sufliciently many independent equations are produced.

3. Analysis and Timings.

Probabilistic algorithins arc rather new in algebraic manipulation. Other probabilistic
algorithms arc discussed in [5,6]. In this scction we first define what is meant by a “good
starting point.” The probability that a random point is good is then determined. This
probability is very small and can casily be made cven smaller. Then the running time of the
algorithms of section 2 are analyzed. Finally a number of sample problems are presented to
comparc the analysis, the actual running time and the running time of several competing
algorithm including the EZGCD algorithm.

3.1. Good snd Bad Points,
Assumc the goal polynomial is (X}, ..., X,) and the starting point is & = (ay, ..., a,)-
The polynomials which are produced by the scquence of dense iterations is

P(Xl,ag,...,a‘,),P(Xl,}(z,ag,..,,(Iu),...,P(Xl,Xz,...,)\’u).

221

The entire algorithm depends upon the accuracy of the skeletal polynomials. The skeletal
polynomials are extracted from the structurc of the polynomials in this sequence. Thus it is
important to know if P(Xj, ag, .. .,a,) has too few terms. This will happen if the cocflicient
of some X¥ in P(X, ..., Xy) is zero at &. Let Fy be the product of the nonzero cocfficients
of X¥in P for k = 1 thru d. If & is not a zcro of Fy then the second skeletal polynomial
will be computed correctly.

Similarly if the coeflicient of some monomial in X and Xy is zcro at @ the second skelctal
polynomial will be erroneous. Define Fy to be the product of the cocfficients of nonzero
monoinials in X7 and Xz and define F3,...,Fy-; similarly. The auxiliary polynomial for
P is defined to be F' == F\Fy---Fy_1. F is a polynomial in Xy, ..., X,. The key assumption
throughout this section is that our initial evaluation point is not a zero of this polynomial. A
point at which I is non-zero is called a good point. F' is the auxiliary polynomial which was
mentioned earlier. Since all bad points satisfly F == 0 they form a variety of codimension
1. Thus almost all points in afline v — 1 space are good.

Each of the F; is the product of no more than ¢ polynomials. Thus the degree of X;
in I7; is bounded by df and in F' by dvi, The following theorem gives the probability that
a point chosen from a set of a given size will be bad for a polynomial of degree D in v variables.

Theorem L. Let / € Z[X),..., X,] and the degree of f in X; be bounded by D. Let Ny(B)
be the number of zeroes of £, (21,...,zy) such that ; € ¥ (a set with B elements, B 3> D).
Then NyB) < B*— (B—D)".

Proof: There are at most 1D values of z, which zero f identically. So for any of the D
values of z,, and any value for the other z;, f is zero. This comes to DB* ™!, For all other
B — D values of z, we have a polynomial in v - I variables. The polynomial can have no
more than N,—1(B) zerocs. Therefore,

Ny{B) < DB*™' 4 (B — D)N, . (B).

Let Ny == (B — D)*7}f,. The resulting equation is easily solved and the theorem follows
directly.

This bound is actually attained by the polynomial

D
f{x;,...,xv)z H(zl—-z)

1=} =]

{2y —1).

o

This polynomial is dense in all of its variables. One would expect a much tighter bound
to hold for sparse polynomials.

Each of the Iy is the product of, at most, ¢ terms and each term is of degree, at most,
d. There are v—1 of these polynomials, so the maximum possible degree of F is (v— 1)¢d.
There are only v— 1 variables in . There are BY points in the set § X +-- X . Applying

222

the theorem to F' the probability that a point chosen at random will be a zero of F is

N,_y(B) B '—(B—D)"!
Bu»l = Bu—-l

D -1
()

v(v—1)id _ v¥d
S— 5 =F

At worst the number of terms in the goal polynomial will be (d 4+ 1)*. So a worst case
bound for the probability that a point will be a zcro of F, and thus a bad point is

vid(d + 1)
—

If we wanted to make the probability of choosing a bad point be at most 1073% we
would have
B> 1030} (d 4 1)1
logB > 69+ 2logv+ (v-+ 1) log{d + 1).

Notice that the size of the numbers which arc uscd is about vlogd. Thus cach arith-
metic operation will take polynomial time. Since there are only a polynomial number of
arithmetic operations the algorithm's expected running lime is polynomial,

3.2, Analysis.

Throughout this section we will assume that all arithmetic can be done in unit time,
the goal polynomial involves v variables and no variable appears to degree more than d
in the goal polynomial.

We will make a number of crude assumptions in analyzing Algorithm 8. We assume.
that cost of evaluating F' is constant and requires C arithmetic operations. We will also
assume that the number of terms of P(X},ay,...,a,) is 41, of P(Xi, X3, €3,...,a,) is iz and
so on; t, is equal to ¢.

Each monomial contained in S is a product of i — 1 terms, and cach term is exponen-
tiated to degree, at most, d. Evaluation of a monomial will thus cost (;—1) log d operations.
Therc arc no more than £;_; terms in S, so step S6 will take about C -+ {f — 1}, logd
operations. Step 56 will be iterated {;__; times to produce the each set of lincar equations.
Thus it will cost Ct;—; + {¢ — l)t?_i logd operations to produce the system of linear
equations.

There will be ¢,__; independent linear equations to be solved. Using straight forward
algorithms this will take about ¢;2_; opcrations. Steps S5 thru S7 will be executed d times
for each variable so it will cost

Cdt;y + (s — Dt logd +edt?_;

223

opcrations to produce the polynomials, pi,...,py _,-

There will be ¢;; terms in each of these polynomials, so algorithm D will be run ;3
times. Each invocation of algorithm D will require about cyd? operations. Adding this mess
up and summing from 7 == 1 thru v we get

v

3 ((czdz 4 Gy + (i — Ddt?_, logd + thf_i)

i=l1

We need to make some assumptions about the structure of ¢; to get anything mean-
ingful out of this. We will assume that the ratio of terms {;/t;—; is a constant, k. Doing
this we get

(£ — 143
=1

dlog dig
=

(k*— 1)t
E (kv — 1) —v) + k| + Qd?&@:—%f’-

Cld +

Despite appearances to the contrary this expression is not exponential in v. Remember
that kViy == t. There are two special cases of this formula that are of interest. If k is large
when compared with 1, we can ignore the small terms involving & and get

£ Lt
C;d*[;‘—i”dbg ‘{11;2'] Czé.

If k is very close to 1, then fy == ¢ and we get
crdvt® 4 dvttlog d -+ cxd Pt

In both of these cascs the dominant behavior is O(t?), assuming ¢ 3> d or v. This is clearly
not exponential in the number of variables {unless £ is) which is unlike any other modular
algorithm.

3.3. Timings.

Here we present a few sample timings and compare them with our cstimates from the
previous section. A more dctailed analysis and further examples are contained in [11].

The first example was chosen to show the sparse modular GCD algorithm at its best.
Nine monomials were chosen at random and combined to produce three polynomials with 3
terms cach. One was multiplied by the other two to give two polynomial of 9 terms. These
two polynomials were used as the input to the GCD routines. The number of variables
ranged up to 10 and the degree of each variable was less than 3. The following table gives
the computation times for the EZGCD algorithm, the Modular algorithm, the Reduced
algorithm, Wang’s new EEZGCD algorithm and finally the Sparse Modular algorithm.
These timings were done on a DEC KL-10 using Macsyma {2]. The polynomials used are

224

contained in the appendix. The asterisks indicate that the machine ran out of space.

v | EZ | Modular | Reduced | EEZ | Sparse Mod
1] .038 047 047 1 .036 .040
21 .21 215 218 | 377 .160
3] 431 920 A78 | 522 .381
41 1.288 7.595 2.027 | .742 842
51 3.128 85.280 x | 1.607 1.825
8 + | 483.700 « | 1.897 3.364
7 x | 2409.327 # | 1715 4.190
8 * ¥ * * 4,534
9 * * % * 4.006

10 * ¥ % * 8.202

As cxpected the modular algorithm ran in cxponential time. Both the EZ and the
Reduced algorithms ran out of storage. This example was carcfully designed so that all
the GCD's were bad zero problems for the EZ algorithm. When these problems were run a
LISP machine with 30 million words of address space the exponential behavior of the EZ
algorithm was evident.

4. Conclusions.

In this paper we have tried to demonstrate how sparse teehniques can be used to increase
the effectiveness of the modular algorithms of Brown and Collins. These techniques can
be used for an extremely wide class of problems and can applied to a number of diffcrent
algorithms including Ilensel’s lemma. We believe this work has finally laid to rest the bad
zero problem.

Much of the work here is the direct result of discussion with Barry Trager and Joel
Moses whose help we wish to acknowledge.

5. Appendix.
This appendix lists the polynomials that were used to test the various GCTY algorithms

in section 3. The d; polynomials arc the GCDs which are computed, the f; and g; the
cofactors, The polynomials that were {ed to the various GCD routines were d,f; and d,g;.

dy =14 2143
fi=22+ 2z +1
g ==+ 2z 42

dy = 2252 + @1z 4 211
ﬁ=x§+2xfzz+$?+l
o=zt 4 ooy + oz + 2t g

225

2 2

dy == x%@ + $§$3 4 2zi1y73 + 1173
2.2 2 2,2

fr= %+ zjz3 + aimprs 4 2123 + 717

g =mn5+2n5+5+5

dy = 2307 + x2x3x4 -4 :lezx‘; + 2924+ 20973
Ji= x1z2r3x4 -+ x1x3x4 —{— zlz4 + ac4 + z12324
gy == z1x3x4 Gz zi -+ :c,1 - a:xxz:rg:q -+ :clzz

dy = xfﬁxamxs -+ x1x2m5 -+ xla:ax,;xr + 2112-’63@“43?5 -+ x1x2x3x§
5= xlxzxs -+ xlx2$3x4:c5 -+ x;xgxax,; -+ z1x2z,§ -1

2. 2 2 2
05 = L1 T504TF - ToTs - T1LT4T5 b TaT5 - T1TT3TY

2.2 2 2.2 2.2 .9 2

dg = xlxza:ﬁ%xﬁ -+ xlx%$§z4x5x§ - T{T3y - TTTIT4TELG | T{TIT5Te
2 2,2 2,2 2,2 2,2,2 2

fo = aimzriag -+ nimaiag - T1058g - T80T - L1TIT4TS

2,2, .2 2 2. .2 2,2
08 = T5TT4T5Ds 1 £ LT fc%xgx.;zgzs + zyenmazirg + 2iTa

2,922 22,2 2,22 2. .2 2
dy = T1TLEGETT - T{TITATEET —+ 237507+ 00T T - T3T4T5
2 2 2,2 2,2 2,.2 2 2
fr = a{mziasegsy - 11403708y -b $3TEA5T7 - DITEETT b TTTT3T 405
2,2 2,22 2 2 2 2,2 .9
1 = T\TITHTEET -t ToTITILIRLT b T4LTT ~F L) ToTIT5TRTT - T{X3TATE

2 2,2 2 2
dg = x2:r4xrzgx73:8 -+ x1x273x4:r61:7xg -+ xiqz 4%’57 4z z253$4x5:z0z7 -+ 1'23'411'{3
k= x%r%rgairr%xs 4 Iz’llt‘fgfg “+ x%x%x%x%ngg -+ x3x3x4a,gcr?fg -+ xlxzfzS:ch;

. 2,22 7 2
gg == x1z4m5r£gz7x8 —+ x1x214x5x5x3 -+ x1x2x3x4x5xg -+~ xlxzxastxg -+ .‘171332.7241’5

2.3 2 2.2 2 3229 2 2. 2
dy == T1T3T4TeTETy + TITUTITLLETRTY - DITITATZAGTY -1 T TETRTTITg ~ T9T3T4T5 LTI Ty
2.2 2 2 2,29 2 2.9.2 2
Ja == ziziasriests + Toxg -+ 2isaairiress -+ irsey - 13zieay

2 2.2.2 | 2 2,2, .2 2 2 2.9 .2 2 2
99 == T{TQT4TETRETTET - L) Ty T385 TgXTIRTg -+ £\ TaT4TeT7a8Ty ~F 21850 Tg ~F T9T4T5Tg Ty

dio

I

]
:r,\ 7*2'6418'59110 -+ 3‘23343'5Z(J'E7Ig’510 -+ ;rlzrza*g'rn 719 -+ ’1211173’1241719 4~ :cl:caa:,;xgxg

« 2,2, 2,200 oo 2,2
flO = $1$2$314x(5r7$8$9510 + $2.7:3:):4$G3,9I10 -}— T1& T3 T4TRT0TI LT 0

222,22 2 2
+ E1TpE(T5TeTr Ly + LI LE5T0T709L10

— 2,2,.2,2 . 2 2

gig == 11:1,2153125555227:1:8313(12%0 “f— a:axg.l.gﬂi% + $1{E2$3£4$5$g$§a?gx10

2,29, 2
- T1T3T6L7 8L 0 - L4TETGTILG

ot

fad

gopw

G.
7.

8.

9.

10,
11.

226

RererencES

. S. Brown, “On Buclid’'s Algorithm and the Computation of Polynomial Greatest Divisors,” J. ACM

18, 4 (197]), 478-504.

MATHLAB Group, MACSYMA Heference Manual—version 9, Laboratory for Computer Science,
Massachusetts Institute of Technology, {1978).

J. Moscsand D. Y. Y. Yun, “The BZGCD algorithm,” Proceedings of ACM Nat. Conf. (1973}, 159-166.
0. R. Musser, “Multivariale Polynomial Facloring,” J. ACM 22, 2 (1975), 201-308.

M. O. Rabin, “Probabilistic Algorithms," Algorithms and Complexity-——New Directions and Recent
Results (J. F. Traub Ed.}, Acad. Press, New York, (1976}, 21-39.

R. Solovay and V. Strassen, “A Fast Monte-Carlo Test for Primality,” SIAM J. of Comp. 6, 1 (1977).
P. S.-H. Wang and L. P. Rothschild, “Facloring Mullivariate Polynomials over the Integers,” Math.
Comp. 29, (1975), 935-930.

P. S.-1I. Wang, “An Improved Multivariate Polynomial Factoring Algorithm,” Math. Comp. 32,
(1978), 1215-1231.

D. Y. Y. Yun, The Hensel Lemma in Algebraic Manipulation, Ph. D. thesis, Massachusetts Institute
of Technology, (1974).

1l. Zassenhaus, “On Hensel Factorization I,” J. Number Theory 1, (1909), 201-311.

R. E. Zippel, Probabilistic Algorithms for Sparse Polynomials, Ph. D. thesis, Massachusetts Institute
of Technelogy, (1879).

