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Abstract

Classically, algorithms for polynomial multipoint evaluation, interpolation and solving trans-
posed Vandermonde systems over a field have a quadratic running time. More efficient al-
gorithms have been discovered, which are based on the Fast Fourier Transform, but these
algorithms are described separately in different literature. To aid in understanding and help
with clarity, we will consolidate and examine these fast algorithms all in one place. We will
present the algorithms, analyze their complexity, and implement them in Maple. All three
algorithms require O(n log2 n) arithmetic operations in the field and this improvement on
their classical running times allows multipoint evaluation, interpolation and Vandermonde
systems to be used in other subquadratic algorithms.

Keywords: Computer Algebra, Subproduct Tree, Vandermonde Systems, Interpolation,
Multipoint Evaluation, Fast Fourier Transform, FFT-based Algorithms, Bluestein’s Algo-
rithm

iii



Contents

Approval ii

Abstract iii

Table of Contents iv

List of Figures vi

List of Tables vii

List of Algorithms viii

1 Introduction 1

2 The Fast Fourier Transform 4
2.1 The Inverse Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Fast Polynomial Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Bluestein’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Bluestein Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Bluestein Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Fast Polynomial Division 16

4 Fast Evaluation 20
4.1 The Subproduct Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Building Up the Subtree . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.2 Dividing Down the Subtree . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Fast Multipoint Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.1 FastEval Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Fast Polynomial Interpolation 31
5.1 Fast Interpolation Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 FastInterp Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iv



6 Solving Transposed Vandermonde Systems 38
6.1 FastVandermonde Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 FastVandermonde Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Conclusion 43

8 Appendix A: Maple Code 46

9 Appendix B: C Code 53

v



List of Figures

Figure 4.1 Subproduct Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 4.2 Example of Subproduct Tree when n = 4 . . . . . . . . . . . . . . . 24
Figure 4.3 Example of Subproduct Tree in Fp when n = 4 and p = 97 . . . . . 24
Figure 4.4 Example of DDST when n = 4 and p = 97 . . . . . . . . . . . . . . 27

vi



List of Tables

Table 2.1 Comparing the timings of Bluestein’s Algorithm in Maple and in C . 14

Table 4.1 The timings of FastEval in Maple . . . . . . . . . . . . . . . . . . . . 30

Table 5.1 The timings of FastInterp in Maple . . . . . . . . . . . . . . . . . . . 36

Table 6.1 The timings of FastVandermonde in Maple . . . . . . . . . . . . . . . 42

vii



List of Algorithms

1 FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 FFTMult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Bluestein’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 FastNewton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5 FastDivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 BUST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7 DDST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8 FastEval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

9 InterpWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
10 FastInterp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

11 FastVandermonde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

viii



Chapter 1

Introduction

Let F be a field and suppose that we have a polynomial f(x) = a0 + a1x + a2x
2 + ... +

an−1x
n−1 ∈ F [x]. Polynomial evaluation is the process of simplifying a polynomial such as

f(x) down to a single numerical value by substituting a given point for the variable. Multi-
point evaluation evaluates the same polynomial at a number of arbitrary points. Polynomial
interpolation is the reconstruction of the polynomial f(x) from its values v0, ..., vn−1 at n
distinct points u0, ..., un−1, where f(ui) = vi for 0 ≤ i ≤ n− 1. The requirement f(ui) = vi

yields the following linear system of equations

f(u0) = a0 + a1u0 + a2u
2
0 + ...+ an−1u

n−1
0 = v0

f(u1) = a0 + a1u1 + a2u
2
1 + ...+ an−1u

n−1
1 = v1

f(u2) = a0 + a1u2 + a2u
2
2 + ...+ an−1u

n−1
2 = v2

...

f(un−1) = a0 + a1un−1 + a2u
2
n−1 + ...+ an−1u

n−1
n−1 = vn−1.

In matrix form, this looks like



1 u0 u2
0 · · · un−1

0
1 u1 u2

1 · · · un−1
1

1 u2 u2
2 · · · un−1

2
...

...
... . . . ...

1 un−1 u2
n−1 · · · un−1

n−1


V



a0

a1

a2
...

an−1


a

=



v0

v1

v2
...

vn−1


v

.

The matrix V is called the Vandermonde matrix of order n, and V a = v is known as a
Vandermonde linear system of equations. Thus, solving V a = v for the unknown coefficient
vector a is equivalent to interpolating the polynomial f(x) from its values at n points.
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Now, in contrast, a transposed Vandermonde system of equations, V T b = v, has the
form



1 1 1 · · · 1
u0 u1 u2 · · · un−1

u2
0 u2

1 u2
2 · · · u2

n−1
...

...
... . . . ...

un−1
0 un−1

1 un−1
2 · · · un−1

n−1


V T



b0

b1

b2
...

bn−1


b

=



v0

v1

v2
...

vn−1


v

.

The need to solve transposed Vandermonde systems arise in sparse interpolation algorithms,
such as in the Ben-Or and Tiwari algorithm [1].

Multipoint evaluation, interpolation and Vandermonde systems are helpful in many
algorithms and so their efficiency is important. Subquadratic algorithms can be used as
subroutines in other subquadratic algorithms, without increasing the running time. The
significance of having all subroutines within an algorithm be subquadratic cannot be over-
stated. For a quadratic time algorithm, with input of size n, if we double n then the time
it takes for a computer to calculate the answer increases by a factor of four. FFT-based
subquadratic algorithms, on the other hand, increase by a factor closer to two. This means
that, for large n, the same computation will take significantly more time for quadratic al-
gorithms. Thus, studying FFT-based subquadratic algorithms for multipoint evaluation,
interpolation, and Vandermonde systems is clearly a worthwhile endeavor to undertake.

Classically, multipoint evaluation, interpolation and Vandermonde systems all have
quadratic time algorithms. Horner’s method may be used n times to evaluate a polynomial
at n points and this costs O(n2) arithmetic operations in F . Interpolation has traditionally
been performed using Lagrange interpolation or Newton interpolation which both do O(n2)
operations. The system of linear equations V T b = v can be solved naively in cubic time and
quadratic space using Gaussian elimination. Zippel showed in [16] how to solve V T b = v in
quadratic time and linear space.

This project will analyze three subquadratic algorithms, one for polynomial multipoint
evaluation, another for polynomial interpolation and the last for solving transposed Vander-
monde systems, denoted from here on as FastEval, FastInterp and FastVandermonde. These
algorithms have been detailed separately in previous literature. FastEval and FastInterp are
based on work by Lipson [13], Fiduccia [6], Horowitz [10], Moenck and Borodin [15], and
Borodin and Moenck [3], but are described in detail in [7]. FastVandermonde is outlined in
[11]. As these three algorithms use the same background tools, it would be beneficial to have
all the information in one place, which will hopefully help with clarity and understanding.
In this paper, we will show that each of the three algorithms require at most O(n log2 n)
arithmetic operations in F and that they can be implemented in Maple efficiently.
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For FastEval, we require algorithms for fast multiplication and fast division in F [x]. For
FastInterp and FastVandermonde, we need to use FastEval. Classical implementations for
multiplication and division in F [x] do O(n2) arithmetic operations in F , but we will discuss
faster methods later on.

The subsequent chapters of this project are organized as follows. Chapter Two will
explore in-depth the Fast Fourier Transform and fast polynomial multiplication as well
as Bluestein’s algorithm. The third chapter will examine fast polynomial division using
Newton iteration. Chapter Four will give an overview of how FastEval works, present a
small example, include timings of the algorithm and analyze its complexity. The fifth and
sixth chapters are formatted in a similar manner as Chapter Four but instead examine the
algorithms FastInterp and FastVandermonde, respectively. The final chapter consists of a
brief conclusion.

Before we proceed, throughout this paper we use the following notation and make the
following assumptions.

• When we write log n, we are always referring to the binary logarithm, log2 n.

• In all pseudo code provided, f × g refers to a fast multiplication of the polynomials f
and g, whereas f · g indicates integer multiplication.

• All algorithms presented in this project can work over any field that contains a prim-
itive nth root of unity with n = 2k. Our implementation was done in a prime field Fp

with a Fourier prime p of the form p = s2k + 1 with large k.
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Chapter 2

The Fast Fourier Transform

Suppose we have a polynomial f(x) = a0 + a1x + ... + an−2x
n−2an−1x

n−1 ∈ F [x], and we
wish to evaluate this polynomial at x = α ∈ F . A naive way to do this would be to let
r = a0 and t = α. Then for 1 ≤ i ≤ n − 1 do r = ai · t + r and t = t · α. This technique
requires 2(n− 1) multiplications and n− 1 additions in F .

A better way to evaluate f(x) is to use Horner’s method. We can rearrange f(x) as
follows

f(x) = a0 + x(a1 + x(a2 + ...+ x(an−2 + x(an−1))...)).

This grouping is called the Horner form of f . For instance, if f(x) = 1 + 2x+ 3x2, then its
Horner form is f(x) = 1 + x(2 + x(3)).

To begin, let r = fn−1. Then, for i = n − 2 down to 0, compute r = r · α + fi. This
method requires n − 1 multiplications and n − 1 additions, so we have saved half of the
multiplications.

We’ve just seen that the cost of evaluating a polynomial of degree n− 1 using Horner’s
method at one point is O(n) operations in F . Thus, if we want to evaluate the polynomial at
n points, u0, ..., un−1, we will need n ·O(n) = O(n2) operations in F . This can be improved
to O(n log n) operations if we evaluate f at n special points, specifically the n powers of a
primitive nth root of unity.

An element w of a field F is an nth root of unity if wn = 1, and w is a primitive nth
root of unity if wn = 1 and wi 6= 1 for 1 ≤ i ≤ n− 1. For example, if p = 97, then w = 22
is a primitive 4th root of unity in Fp since 224 mod 97 = 1 and [w1, w2, w3] = [22, 96, 75].

Given the polynomial f and w, which is a primitive nth root of unity with n = 2k, then
the Discrete Fourier Transform (DFT) evaluates f at the n powers of w and is defined by
the vector

[Ak = f(wk) =
n−1∑
i=0

aiw
ik: 0 ≤ k ≤ n− 1] ∈ Fn.

A direct calculation of the DFT costs O(n2) arithmetic operations in F , using Horner’s
method.

4



The Fast Fourier Transform (FFT) is an algorithm that can compute the DFT in lllll
O(n log n) arithmetic operations in F . Many FFT algorithms have been discovered, however,
the most well-known one is the Cooley-Tukey [4] version. This algorithm was developed
in 1965 and was the first major breakthrough in an implementation of the FFT. Many
consider the FFT to be in the top ten of the most important algorithms discovered in the
20th century. Moving forward, when we mention the FFT, we are specifically referencing
the Cooley-Tukey FFT algorithm, unless indicated otherwise.

The FFT efficiently implements the DFT using a divide and conquer approach. In each
iteration, it splits the even and odd terms of a and recursively calculates FFTs of half the
size. It achieves this in the following way.

Since n = 2k, we are able to rewrite f(x) as

f(x) = (a0 + a2x
2 + ...+ an−2x

n−2) + x(a1 + a3x
2 + ...+ an−1x

n−2)

= b(x2) + xc(x2).

where b(x) = a0 + a2x + ... + an−2x
n/2−1 and c(x) = a1 + a3x + ... + an−1x

n/2−1. Notice
that b(x) and c(x) are both half the size of f(x).

From here, the properties of w, outlined in Lemma 2.1 below, are utilized by the FFT.

Lemma 2.1. Let w ∈ F be a primitive nth root of unity. If 2 divides n, then:

I . wi = −wi+n/2

II . w2 is a primitive (n/2)th root of unity.

III . w0 + w1 + ...+ wn−1 = 0

Proofs for the properties in Lemma 2.1 can be found in [9].
Property I in Lemma 2.1 tells us that b(x2) and c(x2) evaluated at x = wi is equivalent

to b(x2) and c(x2) evaluated at x = −wi+n/2. This fact allows us to save approximately
half of the work required to calculate A. To compute an FFT of size n/2, we need to use
property II in the recursive call and, since n = 2k, we can apply property I again to save
another one-fourth of the work. Algorithm 1 presents pseudo code for the FFT.

We will give two complexity analyses for Algorithm 1. One that only counts the number
of multiplications in F , as is typical for an FFT analysis. And another that counts all
arithmetic operations in F , which we need later.

Let T (n) be the number of multiplications in F that the FFT needs. First, if n = 1,
then no multiplications are performed, thus T (1) = 0. Next, there are two recursive calls of
size n/2 and we need one multiplication to compute the w2 in them. Finally, we conduct
two multiplications, wi · Ci and wi · w, in the for loop that executes n/2 times. Hence, the
for loop requires n multiplications in total. Therefore, the recurrence relation for Algorithm
1 is

5



Input : n = 2k, a = [a0, a1, ..., an−1] ∈ Fn
p , p is prime, and w ∈ Fp of order n.

Output: A = [f(1), f(w), f(w2), ..., f(wn−1)] ∈ Fn
p , where f(wk) =

n−1∑
i=0

aiw
ik.

1 if n = 1 then
2 return a
3 end
4 n2← n/2
5 b← [a0, a2, ..., an−2]
6 c← [a1, a3, ..., an−1]
7 B ← FFT(n2, b, w2, p)
8 C ← FFT(n2, c, w2, p)
9 wi← 1;

10 for i from 0 to n2− 1 do
11 T ← wi · Ci

12 Ai ← Bi + T
13 An2+i ← Bi − T
14 wi← wi · w
15 end
16 return A

Algorithm 1: FFT

T (n) = 2T (n/2) + n+ 1.

lll Solving the recurrence in Maple with the rsolve command gives T (n) = n log n+n−1 ∈
O(n log n). This recurrence relation can also be solved with the Master Theorem. It is the
second case of Theorem 4.1 in [5]. And so, by the Master Theorem, T (n) ∈ O(n log n).

Algorithm 1 can be improved using an optimization found by Law and Monagan in [12].
Suppose we precompute the powers of w in an array, W = [1, w, w2, ..., wn/2−1], of length
n/2 and access them as needed using

wsi = Wsi lll for 0 ≤ i <
n

2s
lll where s ∈ {1, 2, 4, ...,

n

2}.

This would reduce the number of multiplications in the FFT by half as we do not need
to calculate w2 in the recursive calls nor wi · w in the for loop. Thus, the new recurrence
relation for T (n) is

T (n) = 2T (n/2) + n/2.

which solves to T (n) = 1
2(n log n) ∈ O(n log n).

Now, let Fn be the number of arithmetic operations in F that the FFT needs using
the Law and Monagan optimization. For each multiplication, there is also an addition and
subtraction, and so the recurrence relation is

Fn = 2Fn/2 + 3(n/2)

6



which solves to Fn = 3
2(n log n) ∈ O(n log n). We now have the following theorem.

Theorem 2.2. Let Fn be the number of arithmetic operations in F required to compute an
FFT of size n. Then, Fn = 3

2(n log n).

The Cooley-Tukey FFT algorithm can be used with any composite length but performs
best with highly composite lengths, such as powers of two. If n is not a power of two, then
we can pad a with zeroes to increase its length to a power of two, however, this will slow
down the running time. This is why we assumed that n = 2k; in an effort to make our
implementation as efficient as possible.

Observe that the FFT requires w to exist, however, not every field has a primitive nth
root of unity. It is recognized that, for a prime power q, a finite field Fq with q elements
contains a primitive nth root of unity if and only if n divides q − 1. [7]. This is why we
assumed that we are working in F in the introduction. We now know that the finite field
Fp has a primitive nth root of unity if and only if n divides p− 1. And Fp is the field that
we will use in all of our implementations. All algorithms given in this paper can work over
any general field that contains a primitive nth root of unity with n = 2k. When coding, we
used Fp since that is the implementation that came most naturally. In Fp, for the prime p,
we will use a Fourier prime. A Fourier prime is a prime p where p− 1 is divisible by some
large power of two. This will allow us to apply the FFT and, later on, FFT multiplication
on polynomials with large degrees.

2.1 The Inverse Fast Fourier Transform

The Inverse FFT (IFFT), as the name implies, is the opposite or reverse of the FFT. And
so, since the FFT evaluates, this suggests that the IFFT interpolates. Indeed, the IFFT
determines the coefficients of f by interpolating the n outputs of f evaluated at the powers
of w. This can be achieved using Algorithm 1 with some variation.

Given n = 2k, wnv = w−1 ∈ Fp, and the FFT of f(x), A = [f(1), f(w), ..., f(wn−1)] ∈ Fn
p ,

the IFFT returns the coefficient vector of f(x), a = [a0, a1, ..., an−1] ∈ Fn
p . It is defined by

the vector

[ak =
1
n

n−1∑
i=0

Aiw
ik
nv: 0 ≤ k ≤ n− 1] ∈ Fn.

Now, consider the following Vandermonde linear system of equations



1 1 1 · · · 1
1 w w2 · · · wn−1

1 w2 w4 · · · w2n−2

...
...

... . . . ...
1 wn−1 w2n−2 · · · w(n−1)2


Vw



a0

a1

a2
...

an−1


a

=



f(1)
f(w)
f(w2)

...
f(wn−1)


A

⇒ Vwa = A.

7



Suppose we have A and we wish to find a. One way to do this would be to solve the
linear system Vw · a = A for a. We could also use Gaussian elimination to calculate the
inverse V −1

w and then compute a = V −1
w · B. However, solving and inverting both require

O(n3) operations in F when Gaussian elimination is used [9]. To improve on this, we need
the following two lemmas.

Lemma 2.3. Let w ∈ F be a primitive nth root of unity. Then, w−1 = wn−1 and w−1 is a
primitive nth root of unity.

Proof. We know that wn = 1. This implies that wn−1 · w = 1. Multiplying both sides by
w−1, we find that wn−1 = w−1.

Now, towards a contradiction, suppose that (w−1)k = 1 for some 1 ≤ k ≤ n − 1.
Since wn = 1, this means that wn · (w−1)k = 1, which implies that wn−k = 1 for some
1 ≤ n− k ≤ n− 1. But this implies that w is not a primitive nth root of unity, which is a
contradiction. Therefore, w−1 is a primitive nth root of unity.

Lemma 2.4. Vw · Vw−1 = nI ⇒ V −1
w =

1
n
· Vw−1.

A proof of the above lemma can be found in [8]. The proof makes use of property III
of Lemma 2.1.

Thus, to execute the IFFT or, in other words, to interpolate a = [a0, a1, ..., an−1] from
A = [f(1), f(w), ..., f(wn−1)], we do the following

a ∈ Fn
p = V −1

w ·A =
1
n

(Vw−1 ·A) =
1
n
FFT(n,A,w−1, p) ∈ Fn

p .

The running time of the IFFT is Fn arithmetic operations for the FFT plus n multi-
plications of a vector in Fn

p by n−1, therefore, the IFFT also costs O(n log n) arithmetic
operations in F . Now, the IFFT, together with the FFT, allows us to perform fast multi-
plication, which we will see in the next section.

2.2 Fast Polynomial Multiplication

Suppose we have two polynomials f(x) = a0 + a1x + a2x
2 + ... + adx

d and g(x) = b0 +
b1x + b2x

2 + ... + bdx
d. Let their product be h(x) = c0 + c1x + c2x

2 + · · · + c2dx
2d. The

classical multiplication algorithm multiplies each term in g by each term in f . Since both
polynomials have at most d + 1 terms, this means that, in the worst case, we would need
(d+ 1)2 multiplications in F to find h(x). This can be reduced by using the FFT.

First, pick n > 2d with n = 2k. Then, compute w of order n in Fp. Now, using the
FFT, evaluate f and g at the n powers of w. Next, from those results, obtain the products
h(wi) = f(wi)g(wi) through pairwise multiplication. Finally, acquire the coefficients of h
by interpolating at the product values using the IFFT.

8



Suppose we have a = [a0, a1, ..., ad] ∈ Fd+1
p , b = [b0, b1, ..., bd] ∈ Fd+1

p , where a and b are
the coefficient vectors of two polynomials f(x) and g(x). Then, a and b must be padded with
zeros to length n. We define A = [a0, a1, ..., ad, 0, ..., 0] ∈ Fn

p and B = [b0, b1, ..., bd, 0, ..., 0] ∈
Fn

p .
And so, if we are given A, B, and w ∈ Fp, where w is a primitive nth root of unity,

then, FFT multiplication returns c = [c0, c1, ..., c2d, 0, ..., 0] ∈ Fn
p , where c is the coefficient

vector of the polynomial h(x) and h(x) = f(x) × g(x) ∈ Fp[x]. Algorithm 2 outlines FFT
multiplication.

Input : n = 2k, A = [a0, a1, ..., ad, 0, ..., 0] ∈ Fn
p , B = [b0, b1, ..., bd, 0, ..., 0] ∈ Fn

p , and
w ∈ Fp of order n, where p is a prime.

Output: c = [c0, c1, ..., c2d, 0, ..., 0] ∈ Fn
p .

1 a← FFT(n,A,w, p)
2 b← FFT(n,B,w, p)
3 C ← [a0 · b0, a1 · b1, ..., an−1 · bn−1]
4 c← FFT(n,C,w−1, p)
5 nv ← n−1

6 c← [nv · c0, nv · c1, ..., nv · cn−1]
7 return c

Algorithm 2: FFTMult

Let M(n) be the number of arithmetic operations in F required for multiplying two
polynomials of degree less than or equal to n using FFTMult. Algorithm 2 calls the FFT
three times as well as performs n multiplications each in lines 3 and 6. For the previously
described Law and Monagan [12] optimization of the FFT, we must compute W and W−1,
which both cost n/2 multiplications. We also compute the inverse of w in line 4 and the
inverse of n in line 5. The equation for M(n) is shown in the following theorem.

Theorem 2.5. Let M(n) be the number of arithmetic operations in F required for a fast
mutliplication of two polynomials of degree less than or equal to n. Then,

M(n) = 3Fn + 3n+ 2 =
9
2(n log n) +O(n) ∈ O(n log n).

We must now remark on a key idea. Let f =
∑n−1

i=0 aix
i and g =

∑n−1
j=0 bjx

j in F [x]. In
classical polynomial multiplication, since both f and g have degree n− 1, this means that
their product would have degree 2n− 2 and

f × g = h =
2n−2∑
k=0

ckx
k in F [x],

where the coefficient ck is given by: ck =
∑

i+j=k
aibj . This is not the case for FFTMult.

We define the convolution, f ∗ g, with respect to n of the polynomials f and g to be the
polynomial h′ such that

9



f ∗ g = h′ =
n−1∑
k=0

c′kx
k in F [x]

where the coefficient c′k is given by

f ∗ g = h′ =
∑

i+j=k mod n
aibj =

n−1∑
i=0

aibk−j for 0 ≤ j ≤ n− 1.

Then, f ∗ g = f × g mod xn − 1 or h′ = h mod xn − 1.
The result of a polynomial f mod xn is just the remainder after dividing f by xn. That

is, f = f? mod xn, where f and f? have the same first n terms.
In other words, convolution and polynomial multiplication are equivalent mod xn − 1.

This is because we can regroup the sum in the polynomial h as h =
∑n−1

k=0(ck + ck+nx
n)xk

which simplifies to h =
∑n−1

k=0 c
′
kx

k mod xn − 1.
Now, we will consider convolution in regards to the FFT. We have that FFT (f ∗ g) =

FFT (f) · FFT (g), where we use pointwise multiplication to find the product of vectors
FFT (f) and FFT (g). This is true since f ∗ g = f × g mod xn− 1, and so there exists some
q ∈ F [x] where f ∗ g = f × g + q(xn − 1). Thus, since wn = 1, we have

(f ∗ g)(wl) = f(wl)g(wl) + q(wl)(wln − 1)

= f(wl)g(wl) + q(wl) · 0 for 0 ≤ l ≤ n− 1.

Thus, if the degree of the product h of f × g is greater than n, then the coefficients of
h begin to wrap back around. This means that cn is added to c0 and cn+1 is added to c1

and so forth. And so, given coefficient vectors a and b of polynomials f and g, respectively,
FFTMult returns their product mod xn − 1 if an FFT of order n is used but n ≤ degree f
+ degree g.

Fast multiplication has been coded into Maple as the Expand(...) mod p command. It
takes two polynomials and multiplies them using an FFT, then returns their product as a
polynomial in Fp[x]. If coding in Maple, it is sufficient to use this command for all subsequent
algorithms in this paper, except for one, if the reader does not wish to explicitly code the
FFT and FFT multiplication. However, the reader should be aware that Expand(...) mod

p does not compute the product mod xn − 1. This will be important in the next section.
For example, suppose n = 2, p = 97 and we have two polynomials f(x) = 1 + 2x and

g(x) = 3+4x. Then, h(x) = f(x)×g(x) = 8x2 +10x+3 and h(x) mod x2−1 = 8+10x+3 =
10x+11. For FFTMult, we would input two arrays a = [1, 2] and b = [3, 4] and the procedure
would return c = [11, 10]⇒ h(x) = 10x+ 11 in F97[x].

10



2.3 Bluestein’s Algorithm

A few years after the Cooley-Tukey FFT was published, Bluestein presented in [2] a different
version of the FFT. Bluestein’s algorithm accomplished this by reorganizing the DFT as
a convolution. Bluestein’s algorithm performs well with prime sizes but is slower than the
Cooley-Tukey FFT for composite sizes.

Let a = [a0, a1, ..., an−1] ∈ F be the coefficient vector of the degree n − 1 polynomial
f(x) and let w be a primitive nth root of unity. Now, recall the formula for the DFT

[Ak = f(wk) =
n−1∑
i=0

aiw
ik: 0 ≤ k ≤ n− 1] ∈ Fn.

The key idea, credited to Bluestein, considers the identity

ik =
1
2(k2 + i2 − (k − i)2).

The 1
2 in the above expression will give us a bit of trouble in the DFT. To circumvent

this, throughout this section, our goal will be to compute

Xk =
n−1∑
i=0

aiw
2ik, lll0 ≤ k ≤ n− 1. (2.1)

Now, substituting the identity into the w2ik in (2.1) gives

w2ik = wk2 · wi2 · w−(k−i)2 .

The first term, wk2 , does not depend on i, thus we can pull it out of the sum. The second
term must still be multiplied with ai and the last term is what causes (2.1) to have the form
of a convolution.

Therefore, we can rewrite (2.1) as follows

Xk = wk2 ·
n−1∑
i=0

ai · wi2 · w−(k−i)2
, lll0 ≤ k ≤ n− 1. (2.2)

We define three sequences bk, ri, and si, such that

bk = wk2
, lllllri = aiw

i2
, lllllsi = w−i2

lllllfor 0 ≤ i, k ≤ n− 1.

At this point, the summation in (2.2) is exactly a convolution of ri and si, and

Xk = bk ·
n−1∑
i=0

risk−i, lllfor 0 ≤ k ≤ n− 1. (2.3)

We know from the previous section that a convolution can be carried out by FFT
multiplication, and this particular convolution can be carried out with a FFT multiplication
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of size at least 2n−1. Thus, if we increase the length of r and s by zero padding to a highly
composite length such as a power of two, then the convolution can be quickly performed by
the Cooley-Tukey FFT in O(n log n) operations in F . This allows for prime length FFTs
to be computed by a more efficient FFT algorithm.

Let m be the next power of two greater than or equal to 2n − 1. We must zero pad r
and s to length m. We extend ri of length n to a vector Ri of length m by zero padding in
the usual way. However, zero padding si in the usual way is not sufficient. The sk−i term
in (2.3) forces both positive and negative values of i to be needed for si. Since si = w−i2 ,
we have that s−i mod n = si. Then, −i = m− i, by the periodic boundaries of the FFT.

To summarize, we extend r and s by letting:

Ri =

ri, for 0 ≤ i ≤ n− 1

0, otherwise
llllllllllSi =


si, for 0 ≤ i ≤ n− 1

sm−i, for m− n+ 1 ≤ i ≤ m− 1

0, for n ≤ i ≤ m− n

Now, we must execute an FFT multiplication of size m with input arrays R and S and
output a vector c. The convolution has now been computed and so all there is left to do is
to multiply bk by ck for all k and then we are done. Included in Algorithm 3 is pseudo code
for Bluestein’s algorithm.

At this time, we will provide an example of Bluestein’s algorithm. Suppose that we have
n = 7, a = [1, 2, 3, 4, 3, 2, 1], w = 49 and p = 7 · 24 + 1. Then:

b = [1, 49, 106, 28, 28, 106, 49];
r = [1, 98, 92, 112, 84, 99, 49];
s = [1, 30, 16, 109, 109, 16, 30];

m ≥ 2n− 1 = 16;
w1 = a primitive mth root of unity = 40;

R = [1, 98, 92, 112, 84, 99, 49, 0, 0, 0, 0, 0, 0, 0, 0, 0];
S = [1, 30, 16, 109, 109, 16, 30, 0, 0, 0, 30, 16, 109, 109, 16, 30];
c = [16, 99, 41, 95, 25, 52, 60, 15, 84, 44, 96, 43, 31, 29, 65, 11].

X = [16, 105, 52, 61, 22, 88, 2].

One can check that our output, X, is indeed equal to the Xk in (2.1).
Note that in our implementation of Bluestein’s algorithm, we evaluated f at w2i instead

of wi for 0 ≤ i ≤ n−1. As we compute the powers of w2i, we first only get the even exponents.
Then, when the exponent of w becomes greater than n, because of the nature of the primitive
nth root of unity, it is the same as that exponent mod n. If n is odd, then modding an
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Input : A vector a = [a0, a1, ..., an−1] ∈ Fn
p , which is the coefficients of a

polynomial f(x) in Fp[x] with prime p, the number of coefficients n, and
a primitive nth root of unity, w ∈ Fp.

Output: X = [f(1), f(w), f(w2), ..., f(wn−1)], where f(wk) =
∑n−1

i=0 aiw
2ik.

1 W ← [w0, w1, ..., wn−1]
2 for i from 0 to n− 1 do
3 t← i2 mod n
4 bi ←Wt

5 ri ← ai · bi ∈ Fp

6 t← −t mod n
7 si ←Wt

8 end
9 m← The next power of two ≥ 2n− 1

10 w1← A primitive mth root of unity
11 Set Ri = ri for 0 ≤ i ≤ n− 1; and set Ri = 0 for n ≤ i < m
12 Set Si = si for 0 ≤ i ≤ n− 1; set Si = sm−i for m− n+ 1 ≤ i ≤ m− 1; and set

Si = 0 for n ≤ i ≤ m− n
13 c← FFTMult(m,R, S,w1, p)
14 X ← [b0 · c0, b1 · c1, ..., bn−1 · cn−1] ∈ Fn

p

15 return X

Algorithm 3: Bluestein’s Algorithm

even exponent produces an odd exponent, thereby giving us all the powers of w. Thus, if
we wish to convert Xk into Ak, that is the regular DFT, then, for odd n, we can use the
following method: X0 = A0, X1 = A2, X2 = A4, ..., X(n−1)/2 = An−1, X(n+1)/2 = A1llllllll

X(n+3)/2 = A3, ..., Xn−1 = An−2. The even case is disregarded here, as one would normally
use an FFT algorithm that is more efficient for this type of n.

2.3.1 Bluestein Complexity

To simplify the cost analysis and the input for the timings, we will assume that n = 2k,
which implies that m = 2n, here and in the next section.

Let T (n) be the number of arithmetic operations in F that Bluestein’s algorithm per-
forms. There are n multiplications each in lines 1, 5, and 14. Then, in line 13, there is an
FFT multiplication of size m. Recall that M(n) = 9

2(n log n), by Theorem 2.5. Hence,
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T (n) ≤ M(m) + 3n

≤ M(2n) +O(n)

≤ 9
2(2n log 2n) +O(n)

≤ 9n log 2n+O(n) ∈ O(9n log 2n) ∈ O(n log n).

Therefore, Bluestein’s algorithm requires O(n log n) arithmetic operations in F .

2.3.2 Bluestein Timings

We have implemented the FFT and Bluestein’s algorithm in Maple and in C. Code is
provided in Appendix A and Appendix B.

We randomly generate a vector, a, of size n which are the coefficients of f , where n = 2k

and 8 ≤ k ≤ 24. We will work over the field Fp, where p = 7 · 226 + 1. Then, we compute w,
a primitive n root of unity. This will be used as input for Bluestein’s algorithm in Maple
and in C to allow for comparisons. The timings were run on an Intel Xeon E5 2660 CPU
with 64 gigabytes of RAM.

n Maple Growth Factor C Growth Factor Maple/C
210 293 ms N/A 0 ms N/A N/A
211 568 ms 1.94 1 ms N/A 568
212 1.23 s 2.17 2 ms 2.00 615
213 2.62 s 2.13 4 ms 2.00 655
214 5.60 s 2.14 9 ms 2.25 622
215 12.22 s 2.18 20 ms 2.22 611
216 26.05 s 2.13 42 ms 2.10 620
217 56.23 s 2.16 89 ms 2.12 632
218 2.05 min 2.19 188 ms 2.11 654
219 4.39 min 2.14 386 ms 2.05 682
220 9.11 min 2.08 815 ms 2.11 671
221 18.68 min 2.05 1.71 s 2.10 655
222 39.42 min 2.11 3.60 s 2.11 657
223 1.37 hr 2.09 7.54 s 2.09 654
224 2.77 hr 2.02 15.64 s 2.07 638

Table 2.1: Comparing the timings of Bluestein’s Algorithm in Maple and in C

The first column of Table 2.1 displays values of n ranging from 210 up to 224. The second
and fourth columns present the time it took to run Bluestein’s algorithm in Maple and in
C at that value of n. The third and fifth columns show, after n is doubled, the factor by
which the computation time increases. The last column divides the time needed in Maple

14



by the time needed in C, which tells us how much faster C was able to execute the same
instance of input as Maple.

For Maple, as n doubles, the factor by which the time increases ranges from 1.94 to
2.19, with an average of 2.1. For C, the factor by which the time increases, as n is doubled,
ranges from 2.00 to 2.25, with an average of 2.1.

Thus, for both Maple and C, we can see that the time taken increases by just a factor
of two each time n is doubled, which suggests that these are both O(n log n) algorithms.

C was faster than Maple for all n. The average number in the last column is 638. This
means that, on average, C was able to execute the same instance of Bluestein’s algorithm
638 times faster than Maple!

The reason why the execution speed in C is so much faster than in Maple is due to the
fact that C is a compiled language and Maple is an interpreted language.

Compiled languages use a compiler to translate a program into machine language that
a computer can execute. Every time a change is made to the program, it needs to be recom-
piled. These types of languages also give the user more control over memory management
and access to special hardware instructions. On the other hand, interpreted languages exe-
cute a program directly, without compiling it, and they have to interpret what the user has
actually written. Interpreted languages are usually much slower than compiled languages.
This is because each line of an interpreted program must be translated, interpreted, and
executed every time it is run and this slows the whole process down. In general, interpreted
languages are slower than compiled languages when they must do lots of small pieces of
work like arithmetic with small integers, such as in the FFT. Interpreted languages perform
better when they must do big pieces of work like multiplying polynomials or matrices. This
is because the interpreter overhead is low compared with the work being done.

Maple and other interpreted languages also have other benefits. Mainly, Maple is more
intuitive than C and less complicated to use. It is easier to revise and debug than C, since it
doesn’t have to recompile the program every time. Maple is interactive in that it allows users
to input data directly into commands, such as factor, gcd, etc., which will then produce
output from that input. This is not the case in C, where a user must write a complete
program before any output can be seen. Both programming languages have advantages and
disadvantages, and the reader should be mindful of them as they choose which one works
best for them.
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Chapter 3

Fast Polynomial Division

Let f(x) = a0 + a1x+ ...+ an−1x
n−1 + anx

n ∈ F [x] and g(x) = b0 + b1x+ ...+ bm−1x
m−1 +

bmx
m ∈ F [x] be polynomials such that n ≥ m and m ≥ 0. Then, for all f, g with g 6= 0

there exist unique polynomials q, r ∈ F [x] such that f = gq + r, where either r = 0 or the
degree of r is less than the degree of g.

To compute the quotient, q, or remainder, r, using the standard polynomial long division
algorithm, we would need (n−m+1)mmultiplications in F in the worst case. This is because
there are at most n−m+ 1 steps in the division algorithm and each step does at most m
multiplications. If n = 2m, then the algorithm performs at most (2m−m+1)m = m2 +1 ∈
O(m2) = O(n2) multiplications in F . In this section, we will improve that complexity to
O(n log n) using the FFT-based multiplication algorithm.

To begin, we will define the reciprocal polynomials of f and g as

f r(x) = xnf(1/x) = a0x
n + a1x

n−1...+ an−1x+ an

gr(x) = xmg(1/x) = b0x
m + b1x

m−1...+ bm−1x+ bm.

Observe that f r and gr are merely the polynomials f and g but with their coefficients
reversed. To illustrate, suppose f(x) = 2 + 3x + 4x2 + 5x3. Then, f r(x) = x3f(1/x) =
x3(2 + 3(1/x) + 4(1/x)2 + 5(1/x)3) = 2x3 + 3x2 + 4x+ 5.

Thus, we can rewrite f = gq+ r as f r = grqr +x(n−m+1)rr. This implies that f r = grqr

mod xn−m+1.
The definition of f mod xn was given previously. A similar concept occurs for power

series. If f = f? +O(xn), then f? is known as an order n approximation of f . For example,
if f(x) = 1 + x+ x2 + x3 then f mod x2 is f? = 1 + x and f? is an order 2 approximation
of f , where 1 + x+ x2 + x3 = 1 + x+O(x2).

Now, gr is invertible mod xn−m+1 as a power series since it has a nonzero constant
coefficient [7]. Therefore,
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qr = f r
1
gr

mod xn−m+1.

From here, we can easily acquire the quotient and remainder by calculating q = (qr)r

and r = f − gq, using fast multiplication for the product gq. Thus, our task is to find a fast
algorithm to compute the inverse of gr to an order N = n−m+1 approximation. This can be
done using Newton’s method for power series inversion. Recall Newton’s iteration method
for solving an equation t(y) = 0 that starts with an estimate y0. In our case, y0 = b−1

m ,
where bm is the constant term of gr, since tb−1

m = gr(x)− bm = 0 mod x. We can determine
all subsequent estimates with the formula

yi = yi−1 −
t(yi−1)
t′(yi−1) mod x2i for 0 ≤ i ≤ log2 N .

To compute 1/gr, we use the fact that t(y) = gr − y−1 ⇒ a(1/gr) = 0 and t′(y) = y−2.
Therefore

yi = yi−1 −
gr − y−1

i−1

y−2
i−1

= 2yi−1 − gry2
i−1. (3.1)

We can rewrite (3.1) as follows

yi = 2yi−1 − gry2
i−1 = yi−1 + yi−1(1− gryi−1) mod x2i

. (3.2)

A naive implementation of Newton inversion would use (3.1), whereas we will use (3.2)
in Algorithm 4. To make Newton’s method efficient when N is not a power of two, we
compute 1/gr recursively to mod xdN/2e.

Input : A polynomial g(x) in Fp[x], p is a prime, with g(0) = b0 6= 0, and an
integer n > 0.

Output: g−1 mod xn ∈ Fp[x].
1 if n = 1 then
2 return g−1

0 ∈ Fp

3 end
4 m← dn/2e
5 a← g mod xm

6 y ← FastNewton(a,m, p)
7 z ← (1− g × y)/xm

8 z ← y × z mod xn−m

9 y ← y + xmz
10 return y

Algorithm 4: FastNewton
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The naive implementation of FastNewton using (3.1) would have replaced lines 7, 8 and
9 with the condensed single line 2y − gy2 mod xn, which returns the correct answer, but
also requires a larger than necessary FFT multiplication, thus increasing the cost.

Let I(n) be the number of arithmetic operations in F for computing 1/gr mod xn

using Newton’s method. Recall that M(n) is the cost of multiplying two polynomials of
degree at most n in F . Then, if n = 2k and the naive implementation is used, I(n) =
I(n/2) + M(n/2) + M(n) + O(n). The I(n/2) comes from the recursive call. When we
square y, we are actually multiplying two degree n/2− 1 polynomials and so this is where
we get M(n/2). After squaring y, the result has degree n − 2. This forces the cost of
multiplying the result by g to be M(n). Finally, there is some linear work, including 2 · y
and the subtraction. Solving this recurrence relation for I(n) gives I(n) < 3M(n) +O(n).

In FastNewton, we multiply g and y together, which have degree n/2 and n/2 − 1,
respectively. Hence, the cost of this multiplication is M(n/2). The result of g×y is a degree
n − 1 polynomial that we divide by xn/2 in line 7, and so the z polynomial has degree
n − 1 − n/2 = n/2 − 1. We know that this division is exact because, after line 6, it must
be that g × y = 1 mod xn/2. Consequently, we then multiply two polynomials of degree
n/2− 1 in line 8, which has a cost of M(n/2). We also require some O(n) work. The base
of the recursion is I(1) = 1 since, if n = 1, we only need one division to obtain g−1

0 . Thus,
for FastNewton, we have that I(n) = I(n/2) +M(n/2) +M(n/2) +O(n). Note that, if we
assume thatM(n) is superlinear, i.e.M(n) /∈ O(n), then this implies that 2M(n/2) < M(n)
[7]. That is, two multiplications of degree n/2 polynomials costs less than one multiplication
of degree n polynomials. Now, we can solve the recurrence relation as follows:

I(n) ≤ I(n/2) + 2M(n/2) +O(n)

≤ I(n/2) +M(n) +O(n)

≤ I(n/4) +M(n/2) +M(n) +O(n)
...

≤ I(1) +M(2) +M(4) +M(8) + ...+M(n/4) +M(n/2) +M(n) +O(n)

≤ 1 + 2M(4) +M(8) +M(16) + ...+M(n/4) +M(n/2) +M(n) +O(n)

≤ M(8) +M(8) +M(16) + ...+M(n/4) +M(n/2) +M(n) +O(n)

≤ 2M(8) +M(16) +M(32) + ...+M(n/4) +M(n/2) +M(n) +O(n)
...

≤ 2M(n/2) +M(n) +O(n)

≤ M(n) +M(n) +O(n)

≤ 2M(n) +O(n)
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Therefore, we have improved the cost of FastNewton by a factor of 3
2 .

Next, we will provide pseudo code for a fast division implementation in Algorithm 5.

Input : Polynomials f and g in Fp[x] , where g 6= 0, g is monic, and p is a prime.
Output: The remainder r and quotient q in Fp[x] such that f = gq + r with

degree(r) < degree(g) or r = 0.
1 n← degree(f)
2 m← degree(g)
3 if n < m then
4 return (f, 0)
5 end
6 a← gr mod xn−m+1

7 b← Compute a−1 mod xn−m+1 using Algorithm 4
8 c← f r × b mod xn−m+1

9 q ← cr

10 r ← f − g × q
11 return (r, q)

Algorithm 5: FastDivision

For the runtime of FastDivision, consider Theorem 3.1.

Theorem 3.1. Let D(n) be the number of arithmetic operations required for calculating the
remainder of f ÷ g, where the degrees of f and g are 2n− 2 and n− 1, respectively.

D(n) ≤ 4M(n) +O(n) ∈ O(n log n).

Proof. In FastDivision, we call FastNewton once as well as compute one polynomial multi-
plication in line 8 of degree 2n − 2 by degree n − 1 and one in line 12 of degree n − 1 by
degree n− 1. Hence, using Theorem 2.5, we find the recurrence relation for FastDivision is:

D(n) ≤ I(n) +M(n) +M(n)

≤ 2M(n) +O(n) + 2M(n)

≤ 4M(n) +O(n) ∈ O(n log n)

And so, FastDivision requires work equivalent to at most four polynomial multiplica-
tions. Thus, using Algorithm 2, we can find the remainder of two polynomials in O(n log
n) arithmetic operations in F .
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Chapter 4

Fast Evaluation

We have seen in Sections 2.0 and 2.3 that we can evaluate f at the powers of a primitive
nth root of unity w in O(n log n) time. What if we wish to evaluate f at n arbitrary points,
u0, ..., un−1? How fast can we compute f(ui) = vi for 0 ≤ i < n? Recall that Horner’s
method can do this in O(n2) arithmetic operations in F . In this chapter, we prove the
following theorem.

Theorem 4.1. Let E(n) be number of arithmetic operations in F needed to evaluate a
degree n− 1 polynomial f at n arbitrary points, u0, ..., un−1. Then,

E(n) < 11(n log2 n) +O(n log n) +O(n) ∈ O(n log2 n).

4.1 The Subproduct Tree

In order to implement the fast evaluation algorithm, we must first build a subproduct tree.
A subproduct tree is a complete binary tree of products of polynomials.

We build a subproduct tree using the evaluation points by starting from the leaves and
working our way up to the root. Each node of the tree represents a monic polynomial that is
constructed as the product of its two children. The leaves are the linear polynomials x− ui

for 0 ≤ i < n. Refer to Figure 4.1 to view the subproduct tree.
The height of a tree is the number of edges in the longest simple downward path from

root to leaf. A leaf node will have height zero. The height of a complete binary tree with n
leaves is log n [5].

Before we move on, we will first introduce Lemma 4.2 which will be very helpful for
bounding the cost of the product tree algorithm.

Lemma 4.2. Let n = 2k and a, b, d be natural numbers with b > 0 and let c be a positive
real number. Let S and T be functions where S(n/2) = c · (n log2 n), and

T (1) = a, llllT (n) ≤ 2T (n/2) + bS(n/2) + dn

20



Then, we have:

T (n) < b · 1
4S(n)logln+ b · 1

4S(n) + d(nllogln) + na

Proof. We know that n = 2k, which means that k = log2 n. Therefore, we see that S(n/2) =
c · (n log2 n) = c · 2k · k. We can now more easily solve the recurrence for T (n):

T (n) = 2T (n/2) + b · c · 2k · k + d · 2k

2T (n/2) ≤ 4T (n/4) + b · 2 · c · 2k−1 · (k − 1) + d · 2k−1

= 4T (n/4) + b · c · 2k · (k − 1) + d · 2k−1

4T (n/4) ≤ 8T (n/8) + b · 4 · b · c · 2k−2 · (k − 2) + d · 2k−2

= 8T (n/8) + b · c · 2k · (k − 2) + d · 2k−2

...

2k−2T (3) ≤ 2k−1T (2) + b · 2k−2 · c · 22 · 2 + d · 4

= 2k−1T (2) + b · c · 2k · 2 + d · 4

2k−1T (2) ≤ 2kT (1) + b · 2k−1 · c · 2 · 1 + d · 2

= 2k · a+ c · 2k · 1 + d · 2

= na+ b · c · n+ d · 2

Now, adding both sides of the inequalities and canceling equal terms, we obtain:

T (n) ≤ b · c · n ·
k−1∑
i=0

(k − i) + d · 2k · k + na

= b · c · n · (k2/2 + k/2) + d(n log n) + na

= b · [12(c · n · k2) + 1
2(c · d · k)] + d(n log n) + na

= b · [12(c · (n log n)log n) + 1
2(c · (n log n))] + d(n log n) + na

= b · [12S(n/2)log n+ 1
2S(n/2)] + d(n log n) + na

< b · 1
4S(n)log n+ b · 1

4S(n) + d(n log n) + na

Thus, T (n) < b ·
1
4S(n)log n+ b ·

1
4S(n) + d(n log n) + na.

We are now ready to see how to explicitly build the subtree.
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4.1.1 Building Up the Subtree

Suppose that u0, ..., un−1 ∈ F are the distinct evaluation points for a degree n−1 polynomial
f(x) and k is the height of the subproduct tree, denoted M . Then, if n is a power of two,
k = log2 n. The idea of the subtree is to split the evaluation points into two equal halves
and proceed recursively with each half. To start building the subtree, let mi = x − ui for
0 ≤ i < n be the leaves of the tree. Thus, for n evaluation points, we will have n leaves. We
specify the polynomial Mi,j to be the product of its two children. It is situated at height i
of the tree and j nodes from the left for 0 ≤ i ≤ k and 0 ≤ j ≤ 2k−i−1. Each leaf is defined
by the polynomial M0,j = mj = x− uj , while the root of the tree is defined by the largest
polynomial, Mk,0 =

∏n−1
i=0 mi. Explicitly, we have that

Mi,j = mj·2i ·mj·2i+1 · · ·mj·2i+(2i−1) =
∏

0≤l≤2i−1
mj·2i+l.

Hence, each Mi,j is a subproduct with 2i factors of m =
∏

0≤l≤n−1ml = Mk,0 and can
be found recursively for all i, j using

M0,j = mj , llllMi,j = Mi−1,2j ×Mi−1,2j+1.

Proof of correctness of Algorithm 6 follows directly from above. We can see the layout
of the subproduct tree in Figure 4.1.

Since we are working in a field and the evaluation points are distinct, this means that
each Mi,j in Figure 4.1 is a monic squarefree polynomial and its zero set is the jth node
from the left on level i.

We will now give an example of the subproduct tree for n = 4. Let the evaluation points
be: u0 = 4, u1 = 3, u2 = 2, and u3 = 1. Then, the subtree for those data points is given in
Figure 4.2.

Suppose that p = 97. In Figure 4.3, we will show what the Figure 4.2 subproduct tree
looks like in expanded form in Fp.

The general method for building the subtree is presented as Algorithm 6 and called
BUST.

Note that the subproduct tree does not rely on the polynomial being evaluated, it only
relies on the evaluation points. As such, the construction of the subtree is considered a
precomputation step in the fast evaluation algorithm. If there are multiple polynomials
that must be evaluated at the same evaluation points, then we only need to execute BUST
once and reuse it for the different polynomials.

Our implementation of BUST is recursive. If n = 1, we return x − u0 ∈ Fp. Then, we
recursively call BUST twice to compute the left and right subtree. The first, denoted L, has
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Figure 4.1: Subproduct Tree

input n/2, [u0, ..., un/2−1] and p. And the second, denoted R, has input n/2, [un/2, ..., un−1]
and p. Next, we let f be the product of the two newest polynomials added to the tree, found
in L and R, both of which will have degree n/2. Finally, we return the subtree [f, L,R].

Now, we can examine the running time for BUST using the recursive method.
Let B(n) be the number of arithmetic operations needed to compute the subproduct

tree. BUST can be executed with two recursive calls of size n/2 and one multiplication of
polynomials of degree n/2. Thus, we have the recurrence relation:

B(n) = 2B(n/2) +M(n/2)

For n = 1, we must return x− u0 and so B(1) = 1. If we let M(n/2) = c · (n log2 n) for
some constant c, then we are able to use Lemma 4.2 to solve this recurrence. In this case,
a = 1, b = 1, and d = 0 and we find that:

B(n) < 1 ·
1
4M(n)log n+ 1 ·

1
4M(n) + 0 · (n log n) + 1 · n

=
1
4M(n)log n+

1
4M(n) +O(n) ∈ O(n log2 n)

The complexity analysis of BUST is summarized in Theorem 4.3.
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Figure 4.3: Example of Subproduct Tree in Fp when n = 4 and p = 97

Theorem 4.3. Let B(n) be number of arithmetic operations in F required to build up the
subtree. Then,

B(n) <
1
4M(n)log n+

1
4M(n) +O(n) ∈ O(n log2 n).

Hence, we can compute the subproduct tree in O(n log2 n) arithmetic operations in F .

4.1.2 Dividing Down the Subtree

With our subproduct tree in hand, we are now equipped to tackle fast multipoint evaluation
with a simple divide and conquer algorithm based on the Chinese Remainder Theorem
(CRT). Suppose that we have a polynomial f(x) = a0 + a1x+ a2x

2 + ...+ an−1x
n−1 ∈ F [x]

and we want to evaluate f at the distinct points u0, ..., un−1. Let mi = x− ui for 0 ≤ i < n

as before. Since we specified that the evaluation points are distinct, this implies that mi
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Input : n = 2k, and the evaluation points u = [u0, u1, ..., un−1] ∈ Fn
p for a prime p.

Output: The polynomials Mi,j for 0 ≤ i ≤ k and 0 ≤ j ≤ 2k−i − 1.
1 for i from 0 to n− 1 do
2 M0,i ← (x− ui)
3 end
4 for i from 1 to k do
5 for j from 0 to 2k−i − 1 do
6 Mi,j ←Mi−1,2j ×Mi−1,2j+1
7 end
8 end

Algorithm 6: BUST

will be pairwise coprime for all i. Thus, the system of congruences: f(x) ≡ f(ui) mod mi,
will have a solution by the CRT.

Let us take a moment to consider f mod mi, where mi = x−ui. We know that when we
mod a polynomial f by (x−ui) we are just taking the remainder after dividing f by mi. We
also know that this division results in unique polynomials q and r such that: f = qmi + r,
where r = 0 or degree(r) < degree (mi). Equivalently, we have:

f(ui) = q(ui)mi(ui) + r(ui) = q(ui)(ui − ui) + r(ui) = q(ui)0 + r(ui) = r(ui) = f mod mi.

Therefore, f mod (x−ui) = f(ui) for 0 ≤ i < n . We know that f mod mi ∈ F because
it must have degree less than the degree of mi and the mi’s all have degree one.

Hence, if we compute f mod mi for all i, then we will have evaluated f at n distinct
points, as we wanted. However, an issue arises. Note that the polynomial f has degree n−1
and we are dividing it by a degree one polynomial. Each of these n divisions requires O(n)
multiplications in F . Therefore, this method of evaluation costs O(n2) arithmetic operations
in F , which we do not want. The way to fix this is to use our precomputed subproduct tree.
Instead of dividing f by the mi’s, we will recurse down the tree. Thus, we begin the
algorithm by defining:

r0 = f mod
∏n/2−1

i=0 mi = f mod Mk−1,0 and r1 = f mod
∏n−1

i=n/2mi = f mod Mk−1,1.

Pseudo code for dividing down the subtree is shown in Algorithm 7.

25



Input : n = 2k, a polynomial f ∈ Fp[x] for a prime p, and the polynomials from
the subtree Mi,j for 0 ≤ i ≤ k and 0 ≤ j ≤ 2k−i − 1.

Output: v = [f(u0), ..., f(un−1)] ∈ Fn
p .

1 if n = 1 then
2 return f

3 end
4 r0 ← f mod Mk−1,0

5 r1 ← f mod Mk−1,1

6 ML← the subtree rooted at Mk−1,0

7 MR← the subtree rooted at Mk−1,1

8 L← DDST(n/2, r0,ML, p) ∈ Fn/2
p

9 R← DDST(n/2, r1,MR, p) ∈ Fn/2
p

10 return [L,R]
Algorithm 7: DDST

To be explicit about what Algorithm 7 is doing: line 8 computes r0(u0), ..., r0(un/2−1)
and line 9 computes r1(un/2), ..., r1(un−1) and then, in the 10th line, we simply return
r0(u0), ..., r0(un/2−1), r1(un/2), ..., r1(un−1) = f(u0), ..., f(un−1). Also note that lines 2 and
3 both require a fast division to improve on the O(n2) cost.

At this time we will provide an example of how we traverse down the subtree.

Example 1. Let n = 4, p = 97, f(x) = 4 + 3x+ 2x2 + x3 and let the evaluation points be:
u0 = 4, u1 = 3, u2 = 2, and u3 = 1. We start be computing f mod M1,0 and f mod M1,1

and we find the remainders: r0 = 54x + 90 and r1 = 16x + 91. Then we recursively call
the algorithm twice; once with input n/2 = 2, r0, and the subtree rooted at M1,0 and the
second with input n/2 = 2, r1, and the subtree rooted at M1,1. Now, we calculate:

r0 = 54x+ 90 mod (x− 4) = 15, lllr1 = 54x+ 90 mod (x− 3) = 58
r0 = 16x+ 91 mod (x− 2) = 26, llllr1 = 16x+ 91 mod (x− 1) = 10

The algorithm calls itself again four times. The first recursion has input n/2 = 1, r0 = 15
and the subtree rooted atM0,0. Notice that n is now one, which is the base of the recursion.
Therefore, at this point, we return f = r0 = 15. Similarly, we return f for the other three
recursions and then we are done with the evaluation. Thus, we get: f(u0) = 15, f(u1) =
58, f(u2) = 26, and f(u3) = 10. This concludes the example.

Example 1 is showcased in Figure 4.4.
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Figure 4.4: Example of DDST when n = 4 and p = 97

The correctness for Algorithm 7 can be proved by induction on k = log2 n. For the
base case, we have k = 0, which implies f is a constant. Thus, DDST will return the
correct answer, f , on line 2. For the induction hypothesis, we will assume that, for k ≥ 1,
lines 8 and 10 are correct. Suppose that when we divide f by Mk−1,0 and Mk−1,1, we
get f = q0Mk−1,0 + r0 and f = q1Mk−1,0 + r1, respectively. Thus, evaluating f at ui,
gives: f(ui) = q0(ui)Mk−1,0(ui) + r0(ui) = r0(ui) ∈ Fp for 0 ≤ i < n/2 and f(ui) =
q1(ui)Mk−1,1(ui) + r1(ui) = r1(ui) ∈ Fp for n/2 ≤ i < n. This completes the proof.

We will now determine the runtime of DDST.
Let C(n) be the number of arithmetic operations that Algorithm 7 does. To start, if

n = 1, no operations are performed, and so C(1) = 0. Then, the algorithm has two recursive
calls of size n/2 and each time there are two divisions of f byMi,j andMi,j+1, both of which
have degree n/2. That is, twice we divide a polynomial of degree n − 1 by a polynomial
of degree n/2. Let D(n/2) be the cost of one of those divisions. Therefore, the recurrence
relation is:

C(n) = 2C(n/2) + 2D(n/2)

By Theorem 3.1, we let D(n/2) = c · (n log2 n) for some constant c, which enables us
to use Lemma 4.2 to solve the above recurrence. In this situation, a = 0, b = 2, and d = 0,
and we have:

C(n) < 2 ·
1
4D(n)log n+ 2 ·

1
4D(n) + 0 · (n log n) + n · 0

=
1
2D(n)log n+

1
2D(n) ∈ O(n log2 n)

The runtime of DDST is summarized in Theorem 4.4.
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Theorem 4.4. Let C(n) be number of arithmetic operations in F needed to divide down
the subtree. Then,

C(n) <
1
2D(n)log n+

1
2D(n) ∈ O(n log2 n).

Thus, we can divide down the subproduct tree in O(n log2 n) operations in F .

4.2 Fast Multipoint Evaluation

To complete our fast multipoint evaluation algorithm, we simply need to combine the two
procedures, BUST and DDST, into one. This is shown in Algorithm 8.

Input : n = 2k, the polynomial f ∈ Fp[x], in which p is a prime, and
u = [u0, u1, ..., un−1] ∈ Fn

p , where u is the set of evaluation points.
Output: v = [f(u0), f(u1), ..., f(un−1)] ∈ Fn

p .
1 T ← BUST(n, u, p)
2 v ← DDST(n, f, T, p)
3 return v

Algorithm 8: FastEval

Observe that FastEval does not use the polynomial Mk,0 =
∏n−1

i=0 (x − ui). However,
we will need it in the chapters for fast interpolation and fast Vandermonde. Hence, for
our implementation of BUST, we built the entire subproduct tree, including Mk,0. If the
reader wishes to have two versions of BUST− one for interpolation and Vandermonde that
computes the whole subtree and another for evaluation that only computes the subtree up
to Mk−1,0 and Mk−1,1− they are free to do so.

We will now determine the running time for fast evaluation.
Let E(n) be the number of arithmetic operations performed by FastEval. The procedure

only makes one call to BUST and one call to DDST. Thus, the equation for E(n) is:
E(n) = B(n) + C(n), where B(n) and C(n) is the cost of BUST and DDST, respectively.
Recall Theorem 2.5, 3.1, 4.3 and 4.4, then:
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E(n) = B(n) + C(n)

<
1
4M(n)log n+

1
4M(n) +O(n) +

1
2D(n)log n+

1
2D(n)

≤
1
4M(n)log n+

1
4M(n) +O(n) +

1
2 · (4M(n) +O(n))log n+

1
2 · (4M(n) +O(n))

≤
9
4M(n)log n+

9
4M(n) +O(n log n) +O(n)

≤
9
4 ·

9
2(n log n)log n+

9
4 ·

9
2(n log n) +O(n log n) +O(n)

≤
81
8 (n log2 n) +

81
8 (n log n) +O(n log n) +O(n)

< 11(n log2 n) +O(n log n) +O(n) ∈ O(n log2 n)

Therefore, we have proved Theorem 4.1 given at the beginning of this section and shown
how to evaluate a degree n − 1 polynomial at n distinct points in O(n log2 n) arithmetic
operations in F .

Before we move on, we should address an assumption we made. Throughout this section,
we assumed that the degree(f) < n, what happens if the degree(f) ≥ n? Does FastEval still
work? The answer is: yes, the algorithm still works, however there is an extra step required
and an increase in cost. We would need to compute r(x) = f(x) mod Mk,0, where Mk,0 is
the polynomial at the root of the subproduct tree. Then, degree(r) < n, or r = 0, and we
are back in the scenario we can handle. Thus, we need one additional division of f by Mk,0.

4.2.1 FastEval Timings

We have implemented FastEval in Maple. Code is provided in Appendix A.
We will work over the field Fp, where p = 7 · 226 + 1. Let n = 2k and 8 ≤ k ≤ 18. We

generate a vector, u ∈ Fn
p with ui ∈ [0, p) chosen at random and distinct. Then we randomly

generate a polynomial of degree n − 1. This will be used as input for FastEval as well as
a quadratic version of evaluation which allows them to be compared. For the quadratic
timings, we used the Eval command in Maple n times. The timings were run on an Intel
Xeon E5 2660 CPU with 64 gigabytes of RAM.

The first column of Table 4.1 displays values of n ranging from 28 up to 218. The second
and sixth columns present the time it took to execute the quadratic algorithm and FastEval,
respectively, at that value of n. The fourth and fifth columns display the amount of time
needed for BUST and DDST in FastEval. The third and seventh columns show, after n is
doubled, the factor by which the computation time increases.
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n Quadratic Growth Factor BUST DDST FastEval Growth Factor
28 5 ms N/A 7 ms 70 ms 79 ms N/A
29 19 ms 3.80 16 ms 119 ms 141 ms 1.78
210 79 ms 4.16 34 ms 221 ms 263 ms 1.87
211 295 ms 3.73 58 ms 454 ms 517 ms 1.97
212 1.09 s 3.70 109 ms 1.04 s 1.03 s 1.99
213 4.20 s 3.85 181 ms 2.11 s 2.30 s 1.98
214 17.57 s 4.18 363 ms 5.04 s 5.42 s 2.36
215 1.19 min 4.06 829 ms 10.27 s 11.11 s 2.05
216 4.96 min 4.17 1.58 s 24.16 s 25.76 s 2.32
217 20.88 min 4.21 3.35 s 49.90 s 53.32 s 2.07
218 1.42 hr 4.08 7.08 s 1.71 min 1.83 min 2.06

Table 4.1: The timings of FastEval in Maple

We can see that the quadratic algorithm’s execution time increases approximately by
a factor of four each time n is doubled, which implies that it is indeed a quadratic time
algorithm.

For FastEval, as n doubles, the execution time increases on average by a factor of 2.1.
FastEval became faster than the quadratic algorithm at n = 212. When n = 218, FastEval
was 47 times faster than the quadratic algorithm.

Notice that the time needed for BUST to compute was small in comparison to the overall
time needed for FastEval and that most of the computation time was in DDST. Recall that,
in the recurrence relation for DDST, there is simply two recursive calls and two divisions.
Therefore, if we wish to improve the timings for FastEval, we would have to somehow speed
up the fast division algorithm.
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Chapter 5

Fast Polynomial Interpolation

Given distinct u0, ..., un−1 ∈ F , and arbitrary v0, ..., vn−1 ∈ F , there exists the unique
polynomial f(x) ∈ F [x] of degree less than n such that f(ui) = vi for 0 ≤ i < n. Recall
from the introduction that the requirement f(ui) = vi yields a linear system of equations
that can be expressed in matrix form with V a = v, where V is a Vandermonde matrix of
order n and a is the unknown coefficient vector for f(x).

The determinant of a Vandermonde matrix is given by

det(V ) =
∏

0≤i<j<n(uj − ui).

It is nonzero if and only if all ui are distinct. In our case, the determinant of V is nonzero
since we chose the ui to be distinct, and thus V a = v has a unique solution. Therefore, f(x)
exists and is unique.

The Lagrange interpolant, Li(x), is defined by

Li(x) =
n−1∏
j=0
j 6=i

x− uj

ui − uj
. (5.1)

Then, the property

Li(uj) =

0, if i 6= j

1, if i = j

follows immediately from (5.1). In Lagrange interpolation, the interpolating polynomial
f(x) takes the form

f(x) =
n−1∑
i=0

viLi(x) =
n−1∑
i=0

vi

n−1∏
j=0
j 6=i

x− uj

ui − uj
. (5.2)

Lagrange interpolation requires 7n2−8n+1 = O(n2) operations in F [7]. In this section,
we will show how to improve this to O(n log2 n) operations. Let
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M(x) =
n−1∏
j=0

x− ujll and llti =
∏
j 6=i

1
ui − uj

.

Then, we can rearrange Li(x) as follows:

Li(x) =
n−1∏
j=0
j 6=i

x− uj

ui − uj
=
∏
j 6=i

M(x)
(ui − uj)(x− ui)

= tiM(x)
x− ui

Now, we can rewrite (5.2) like so:

f(x) =
n−1∑
i=0

viLi(x) =
n−1∑
i=0

vitiM(x)
x− ui

The naive way to compute ti would be to invert and multiply each pair of ui − uj and
divide the degree n polynomial M(x) by the linear polynomial (x− ui), for a total cost of
O(n2) arithmetic operations in F . Instead, we will take M ′(x) =

∑
0≤j<nM(x)/(x − ui),

which is the formal derivative of M(x), and note that M(x)/(x− ui) vanishes at all points
uj with i 6= j. Thus,

M ′(ui) = M

x− ui

∣∣∣
x=ui

= 1
ti

Therefore, given M(x), which is the largest polynomial at the root of our subproduct
tree, we can compute all the ti’s with one evaluation of M ′(x) at n distinct evaluation
points. By Theorem 4.1, we know that this costs O(n log2 n) arithmetic operations in F .
We also require O(n) operations in F to compute M ′(x).

Let n = 2k and ci = viti for 0 ≤ i < n. Then, given the polynomials Mi,j from the
subtree, we can use a divide and conquer algorithm to recursively find:

r0 =
n/2−1∑

i=0

ci(Mk−1,0)
x− ui

ll and llr1 =
n−1∑

i=n/2

ci(Mk−1,1)
x− ui

Next, we obtain f using f = Mk−1,1r0 +Mk−1,0r1 and then we return f . Thus, we can
implement fast interpolation with two algorithms. The first is the core of fast interpolation
and outputs f(x) =

∑
0≤i<n(ciM)/(x − ui). The second one pulls everything together by

providing the input for the first algorithm. Pseudo code for these two algorithms is provided
in Algorithm 9 and Algorithm 10.
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Input : n = 2k, c = [v0t0, v1t1, ..., vn−1tn−1] ∈ Fn
p for a prime p, and the

polynomials Mi,j for 0 ≤ i ≤ k and 0 ≤ j ≤ 2k−i − 1 from the subproduct
tree.

Output: f =
n−1∑
i=0

ciM(x)
x− ui

∈ Fp[x] where M = Mk,0.

1 if n = 1 then
2 return c0

3 end
4 c1← [c0, ..., cn/2−1]
5 c2← [cn/2, ..., cn−1]

6 r0 ← Call InterpWork(n/2, c1,Mk−1,0, p) to compute
n/2−1∑

i=0

ci(Mk−1,0)
x− ui

7 r1 ← Call InterpWork(n/2, c2,Mk−1,1, p) to compute
n−1∑

i=n/2

ci(Mk−1,1)
x− ui

8 f ←Mk−1,1 × r0 +Mk−1,0 × r1 ∈ Fp[x]
9 return f ;

Algorithm 9: InterpWork

Input : n = 2k, v = [v0, ..., vn−1] ∈ Fn
p for a prime p, and u = [u0, ..., un−1] ∈ Fn

p ,

where ui is distinct for 0 ≤ i < n.
Output: The unique polynomial f ∈ Fp[x] of degree less than n such that

f(ui) = vi for all i.
1 T ← Call BUST(n, u, p) to compute the subproduct tree.
2 M ←Mk,0

3 s← Call DDST(n,M ′, T, p) to evaluate M ′(x) at ui for 0 ≤ i < n.
4 for i from 0 to n− 1 do
5 t← s−1

i ∈ Fp

6 ci ← vi · t
7 end
8 f ← InterpWork(n, c, T, p)
9 return f

Algorithm 10: FastInterp

The correctness for Algorithm 9 can be proved by induction on k = log2 n. For the
base case, if k = 0 then M(x) = x− u0, which implies that

∑
0≤i<n(ci(x− ui))/(x− ui) =

(c0(x− u0))/(x− u0) = c0. Thus, on line 2, InterpWork will return the correct answer, c0.
For the induction hypothesis, if k ≥ 1, we will assume that lines 6 and 7 are correct. Then,
since M(x) = Mk−1,0 ×Mk−1,1, Algorithm 9 will return the correct answer in line 9. This
completes the proof.
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We will now provide an example for FastInterp, by continuing Example 1.

Example 2. Suppose that u = [4, 3, 2, 1], v = [15, 58, 26, 10], f(x) = 4 + 3x+ 2x2 +x3 and
p = 97. First, we call BUST which computes the subproduct tree shown in Figure 4.3 and
let M(x) = M2,0. Then, we call DDST with input M ′ and the subtree, which outputs t−1

i

and we find that:

t = [6−1, 95−1, 2−1, 91−1] = [81, 48, 49, 16] ∈ F4
97

c = [v0t0, v1t1, v2t2, v3t3] = [51, 68, 13, 63] ∈ F4
97

Next, we call InterpWork and we compute:

∑
0≤i<2

ci(Mk−1,0)
x− ui

= c0(M1,0)
x− u0

+ c1(M1,0)
x− u1

=
51(x− 4)(x− 3)

(x− 4) +
68(x− 4)(x− 3)

(x− 3)

= 51(x− 3) + 68(x− 4) = 22x+ 60 ∈ F97 = r0.∑
2≤i<4

ci(Mk−1,1)
x− ui

= c2(M1,1)
x− u2

+ c3(M1,1)
x− u3

=
13(x− 2)(x− 1)

(x− 2) +
63(x− 2)(x− 1)

(x− 1)

= 13(x− 1) + 63(x− 2) = 76x+ 55 ∈ F97 = r1.

Finally, we multiply:

Mk−1,1 × r0 +Mk−1,0 × r1 = (x2 + 94x+ 2)(22x+ 60) + (x2 + 90x+ 12)(76x+ 55)

= 4 + 3x+ 2x2 + x3.

Thus, f = 4 + 3x+ 2x2 + x3 ∈ F97[x] and we have found the original polynomial. This
concludes Example 2.

On a final note, recall that interpolating a polynomial of degree n− 1 from its values at
n points is equivalent to solving an n by n Vandermonde system. Hence, our example can
be expressed in matrix form as:

1 4 16 64
1 3 9 27
1 2 4 8
1 1 1 1


V


4
3
2
1


a

=


15
58
26
10


v
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5.1 Fast Interpolation Complexity

Let T (n) be the number of arithmetic operations done by InterpWork. The algorithm has
two recursive calls of size n/2 and each time there are two multiplications of a degree
n/2 polynomial by a polynomial of degree less than n/2. There is also an addition of two
polynomials of degree not more than n− 1. Therefore, the recurrence relation for T (n) is:

T (n) ≤ 2T (n/2) + 2M(n/2) + 1 · n

To begin, if n = 1, we return c0, and so T (1) = 0. Then, we let M(n/2) = c · (n log2 n)
for some constant c, which enables us to use Lemma 4.2 to solve the above recurrence. In
this situation, a = 0, b = 2, and d = 1, and we have:

T (n) < 2 · 1
4M(n)log n+ 2 · 1

4M(n) + 1(n log n) + n · 0

= 1
2M(n)log n+ 1

2M(n) +O(n log n) ∈ O(n log2 n)

Hence, we can compute f(x) =
∑

0≤i<n

ciM(x)
x− ui

in O(n log2 n) operations in F .

Let I(n) be the number of arithmetic operations in F performed by FastInterp. The
algorithm makes one call to BUST, one call to DDST, and one call to InterpWork. We
require n multiplications to computeM ′, n inverses for line 5, and n multiplications for line
6. Thus, the equation for I(n) is: I(n) = B(n) + C(n) + T (n) + 3n, where B(n), C(n) and
T (n) are the cost of BUST, DDST, and InterpWork, respectively. Recall Theorem 2.5, 3.1,
4.3 and 4.4. Now:

I(n) = B(n) + C(n) + T (n) + 3n

<
1
4M(n)log n+ 1

4M(n) + 1
2D(n)log n+ 1

2D(n) + 1
2M(n)log n+ 1

2M(n) +O(n log n) +O(n)

≤ 3
4M(n)log n+ 3

4M(n) + 1
2 · (4M(n) +O(n))log n+ 1

2 · (4M(n) +O(n)) +O(n log n) +O(n)

≤ 11
4 M(n)log n+ 11

4 M(n) +O(n log n) +O(n)

≤ 11
4 ·

9
2(n log n)log n+ 11

4 ·
9
2(n log n) +O(n log n) +O(n)

≤ 99
8 (n log2 n) + 99

8 (n log n) +O(n log n) +O(n)

< 13(n log2 n) +O(n log n) +O(n) ∈ O(n log2 n)
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Therefore, we have proved the following theorem.

Theorem 5.1. Let I(n) be number of arithmetic operations in F needed to interpolate a
polynomial of degree n− 1. Then,

I(n) < 13(n log2 n) +O(n log n) +O(n) ∈ O(n log2 n).

Thus, with O(n log2 n) arithmetic operations in F , we can interpolate a degree n − 1
polynomial from n distinct points.

5.2 FastInterp Timings

We have implemented FastInterp in Maple. Code is provided in Appendix A.
We will work over the field Fp, where p = 7 · 226 + 1. Let n = 2k and 8 ≤ k ≤ 18. We

randomly generate two vectors, v ∈ Fn
p and u ∈ Fn

p with vi, ui ∈ [0, p) and the ui are distinct.
This will be used as input for FastInterp as well as a quadratic version of interpolation
which allows them to be compared. For the quadratic algorithm, the Interp(...) mod p

command in Maple was used, which employs Newton interpolation. The timings were run
on an Intel Xeon E5 2660 CPU with 64 gigabytes of RAM.

n Quadratic Growth Factor BUST InterpWork DDST FastInterp Growth Factor
28 2 ms N/A 7 ms 8 ms 61 ms 85 ms N/A
29 6 ms 3.00 15 ms 15 ms 120 ms 152 ms 1.79
210 21 ms 3.50 28 ms 29 ms 212 ms 276 ms 1.82
211 73 ms 3.48 49 ms 53 ms 446 ms 557 ms 2.02
212 277 ms 3.79 91 ms 102 ms 1.06 s 1.31 s 2.35
213 1.09 s 3.94 169 ms 207 ms 2.50 s 2.92 s 2.23
214 4.32 s 3.96 360 ms 433 ms 4.62 s 5.50 s 1.88
215 17.50 s 4.05 832 ms 856 ms 9.97 s 11.94 s 2.17
216 1.19 min 4.08 1.57 s 2.19 s 22.12 s 26.18 s 2.19
217 5.15 min 4.32 3.58 s 4.61 s 48.65 s 57.86 s 2.21
218 21.18 min 4.11 7.52 s 9.34 s 1.63 min 1.98 min 2.05

Table 5.1: The timings of FastInterp in Maple

The first column of Table 5.1 displays values of n ranging from 28 up to 218. The
second and seventh columns present the time it took to execute the quadratic algorithm
and FastInterp, respectively, at that value of n. The fourth, fifth, and sixth columns display
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the amount of time needed for BUST, InterpWork, and DDST in FastInterp. The third
and eighth columns show, after n is doubled, the factor by which the computation time
increases.

We can see that the quadratic algorithm’s execution time increases approximately by
a factor of four each time n is doubled, which implies that it is indeed a quadratic time
algorithm.

For FastInterp, as n doubles, the execution time increases on average by a factor of
2.1. The n at which FastInterp became faster than the quadratic algorithm was 215. When
n = 218, the quadratic algorithm took eleven times as long to compute as FastInterp.

Notice that the time computation time for BUST and InterpWork was small in compar-
ison to the overall time needed for FastInterp. Once again, most of the computation time
was in DDST.

Observe that, at small n, Maple’s Interp(...) mod p command performs rather well.
At n = 28, the quadratic algorithm was 43 times faster than FastInterp. Thus, it would be
a good idea to use the Interp(...) mod p command until around n = 215 and then switch
to FastInterp.
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Chapter 6

Solving Transposed Vandermonde
Systems

Let f(x) = a0 + a1x + a2x
2 + ... + an−1x

n−1 ∈ F [x] and f(ui) = vi for 0 ≤ i < n. This
section will present a fast algorithm that solves a transposed Vandermonde linear system
of equations, V Ta = v, for the unknown coefficient vector a of the polynomial f . We can
express this in matrix form as follows



1 1 1 · · · 1
u0 u1 u2 · · · un−1

u2
0 u2

1 u2
2 · · · u2

n−1
...

...
... . . . ...

un−1
0 un−1

1 un−1
2 · · · un−1

n−1


V T



a0

a1

a2
...

an−1


a

=



v0

v1

v2
...

vn−1


v

.

One application of transposed Vandermonde systems is that they need to be solved in sparse
interpolation algorithms, like in [1]. In 1990, Zippel [16] prensented an O(n2) algorithm to
solve a transposed Vandermonde system. Our goal in this section will be to prove Theorem
6.1.

Theorem 6.1. Let V (n) be number of arithmetic operations in F required to solve a trans-
posed Vandermonde system. Then,

V (n) < 20(n log2 n) +O(n log n) +O(n) ∈ O(n log2 n).

First, let (V T )T = V , where V is a Vandermonde matrix of order n. Now, we have:

V Ta = v ⇒ (V −1)TV Ta = (V −1)T v ⇒ Ia = (V −1)T v ⇒ a = (V −1)T v.

where I is the identity matrix of order n. Let Cj(x) = c0,j + c1,jx+ ...+ cn−1,jx
n−1, where

the coefficients are the jth column cj = (c0,j , c1,j , ..., cn−1,j)T of V −1. Then, Cj evaluated
at ui has the same value as the (i, j)th element of V V −1 = I. That is,
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Cj(ui) =

0, if i 6= j

1, if i = j
.

Recall that this is the property of the Lagrange interpolant. Thus,

Cj(x) =
n−1∏
k=0
k 6=j

x− uk

uj − uk
, for 0 ≤ j < n

and

a = (V −1)T v =


c0,0v0 + c1,0v1 + · · ·+ cn−1,0vn−1

c0,1v0 + c1,1v1 + · · ·+ cn−1,1vn−1
...

c0,n−1v0 + c1,n−1v1 + · · ·+ cn−1,n−1vn−1

 . (6.1)

Consider the polynomials:

D(x) = vn−1x+ vn−2x
2 + ...+ v1x

n−1 + v0x
n

Cj(x)D(x) = G(x) = g0x+ g1x
2 + ...+ gn−2x

n−1 + gn−1x
n + ...+ g2n−2x

2n−1.

Since Cj(x)D(x) = G(x), this implies that gn−1 = c0,jv0 +c1,jv1 + ...+cn−1,jvn−1. Thus,
gn−1 has the same form as aj in (6.1), and so aj is the coefficient of xn in G(x).

As in the previous section, let

M(x) =
n−1∏
j=0

x− ujll and lltj =
∏
j 6=i

1
uj − ui

.

Then, we can compute aj quickly without computing all of G(x) by noticing that

Cj(x) =
tjM(x)
x− uj

.

Suppose that

H(x) = M(x)D(x) = h0x
1 + h1x

2 + h2x
3 + ...+ h2n−1x

2n−2 + h2n−1x
2n.

The coefficient of xn in the quotient of H(x)/(x− z), can be found with

Qn(z) = hn + hn+1z + ...+ h2n−2z
n−2 + h2n−1z

n−1.

Now, we have that Qn(uj) = ajt
−1
j for all j. And so, at this point, we have a degree n−1

polynomial, Qn(x), that must be evaluated at n evaluation points, namely u0, ..., un−1. By
Theorem 4.1, this costs O(n log2 n) arithmetic operations in F .
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We find tj in the same way as the interpolation section, by taking the derivative,M ′(x) =∑n−1
j=0 M(x)/(x − uj), and realizing that M/(x − ui) vanishes at all points uj with i 6= j,

and soM(uj) computes t−1
j . Therefore, if we evaluateM ′(x) at the points u0, ..., un−1, then

all of the tj ’s can be obtained.
A summary of FastVandermonde follows. We input the vector u = [u0, ..., un−1] whose

entries make up the transposed Vandermonde matrix V T and the vector v = [v0, ..., vn−1].
First, compute the polynomial M(x) using Algorithm 6: BUST. Let H(x) be defined as
above. We calculate H(x) using fast multiplication and then build the polynomial Qn(x)
using the coefficients of H(x). Next, obtain ri = ait

−1
i and t−1

i by evaluating Qn(x) and
M ′(x) at the entries of u. Lastly, we return the coefficients ai = ri · ti for 0 ≤ i < n. Pseudo
code for FastVandermonde is included in Algorithm 11.

Input : n = 2k, v = [v0, ..., vn−1] ∈ Fn
p for a prime p, and u = [u0, ..., un−1] ∈ Fn

p ,

whose entries make up the transposed Vandermonde matrix V T .
Output: The coefficient vector a = [a0, ..., an−1] ∈ Fn

p , where V Ta = v.
1 T ← Call BUST(n, u, p) to compute the subproduct tree.
2 M ←Mk,0

3 D ← v0x
n + v1x

n−1 + ...+ vn−2x
2 + vn−1x

4 Compute H = M ×D, where
H = h0x

1 + h1x
2 + h2x

3 + ...+ h2n−1x
2n−2 + h2n−1x

2n.
5 Read off the coefficients of H to get Q = hn + hn+1z + ...+ h2n−2z

n−2 + h2n−1z
n−1.

6 r ← Call DDST(n,Q, T, p) to evaluate Q at ui for 0 ≤ i < n.
7 s← Call DDST(n,M ′, T, p) to evaluate M ′ at ui for 0 ≤ i < n.
8 for i from 0 to n− 1 do
9 t← s−1

i ∈ Fp

10 ai ← ri · t
11 end
12 return a

Algorithm 11: FastVandermonde

Now, we will present an example for FastVandermonde, continuing Example 1 and 2.

Example 3. Let u = [4, 3, 2, 1], v = [15, 58, 26, 10], and p = 97. First, we compute the
subproduct tree shown in Figure 4.3 by calling BUST and then we assign M(x) = M2,0 =
x4 + 87x3 + 35x2 + 47x+ 24. Next, we compute the polynomials:

D(x) = 10x+ 26x2 + 58x3 + 15x4

H(x) = 46x+ 27x2 + 54x3 + 16x4 + 60x5 + 68x6 + 5x7 + 15x8

Qn(x) = 60 + 68x+ 5x2 + 15x3
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Now, we call DDST once with Qn(x) and again with M ′ and then we find:

r = [14, 35, 45, 51] ∈ F4
97

t = [6−1, 95−1, 2−1, 91−1] = [81, 48, 49, 16] ∈ F4
97

a = [r0t0, r1t1, r2r2, r3t3] = [67, 31, 71, 40] ∈ F4
97

Therefore, we have solved the transposed Vandermonde system and found the coefficient
vector a = [67, 31, 71, 40] ∈ F4

97. This concludes the example.

In matrix form, Example 3 is expressed as:
1 1 1 1
4 3 2 1
16 9 4 1
64 27 8 1


V T


67
31
71
40


a

=


15
58
26
10


v

6.1 FastVandermonde Complexity

Let V (n) be the number of arithmetic operations in F that FastVandermonde executes.
Algorithm 11 makes one call to BUST, two calls to DDST, and performs one FFT mul-
tiplication of two degree n polynomials. We need n multiplications each to compute ri · t
and the derivative M ′ as well as n inverses in line 9. Therefore, the formula for V (n) is:
V (n) = B(n)+2C(n)+M(n)+3n, where B(n) and C(n) are the cost of BUST, and DDST,
respectively. Recall Theorem 2.5, 3.1, 4.3 and 4.4. Then,

V (n) = B(n) + 2C(n) +M(n) + 3n

<
1
4M(n)log n+ 1

4M(n) +O(n) +D(n)log n+D(n) +M(n) + 3n

≤ 1
4M(n)log n+ 5

4M(n) +O(n) + (4M(n) +O(n))log n+ 4M(n) +O(n) + 3n

≤ 17
4 M(n)log n+ 21

4 M(n) +O(n log n) +O(n)

≤ 17
4 ·

9
2(n log n)log n+ 21

4 ·
9
2(n log n) +O(n log n) +O(n)

≤ 153
8 (n log2 n) + 189

8 (n log n) +O(n log n) +O(n)

< 20(n log2 n) +O(n log n) +O(n) ∈ O(n log2 n)

Thus, we have proved Theorem 6.1 and we are now able to solve a transposed Vander-
monde system with O(n log2 n) arithmetic operations in F .

41



6.2 FastVandermonde Timings

We have implemented FastVandermonde in Maple. Code is provided in Appendix A.
We will work over the field Fp, where p = 7 · 226 + 1. Let n = 2k and 8 ≤ k ≤ 18. We

randomly generate two vectors, v ∈ Fn
p and u ∈ Fn

p with vi, ui ∈ [0, p) and the ui are distinct.
This will be used as input for FastVandermonde as well as a quadratic version of solving
transposed Vandermonde systems to allow for comparisons. For the quadratic timings, we
coded Zippel’s algorithm [16]. The timings were run on an Intel Xeon E5 2660 CPU with
64 gigabytes of RAM.

n Quadratic Growth Factor BUST DDST 1 DDST 2 FastVandermonde Growth Factor
28 16 ms N/A 7 ms 66 ms 54 ms 142 ms N/A
29 65 ms 4.06 16 ms 117 ms 102 ms 248 ms 1.75
210 276 ms 4.25 31 ms 241 ms 224 ms 515 ms 2.08
211 1.14 s 4.13 62 ms 529 ms 451 ms 1.16 s 2.25
212 4.78 s 4.19 108 ms 1.01 s 933 ms 2.40 s 2.07
213 18.17 s 3.80 184 ms 2.31 s 2.09 s 4.86 s 2.02
214 1.32 min 4.34 382 ms 4.65 s 4.48 s 9.86 s 2.03
215 5.16 min 3.92 901 ms 9.62 s 9.47 s 22.17 s 2.25
216 20.40 min 3.95 2.07 s 20.53 s 20.59 s 47.23 s 2.13
217 1.36 hr 4.01 4.60 s 46.12 s 46.23 s 1.66 min 2.11
218 5.55 hr 4.08 9.29 s 1.59 min 1.58 min 3.47 min 2.09

Table 6.1: The timings of FastVandermonde in Maple

The first column of Table 6.1 displays values of n ranging from 28 up to 218. The
second and seventh columns present the time it took to execute the quadratic algorithm
and FastVandermonde at that value of n. The third and eighth columns show, after n is
doubled, the factor by which the computation time increases. The fourth column displays
the execution time for BUST in FastVandermonde. The fifth and sixth columns show the
amount of time needed for the first and second execution of DDST in FastVandermonde,
respectively.

For the quadratic algorithm, we can see that the time it takes for that algorithm to run
increases approximately by a factor of four each time n is doubled, which implies that it is
indeed a quadratic time algorithm.

For FastVandermonde, the execution time increases on average by a factor of 2.1, as n
is doubled. FastVandermonde overtook the quadratic algorithm in execution speed when
n = 212. When n = 218, FastVandermonde was 96 times faster than the quadratic algorithm.

Notice again that the time needed for BUST to compute was small in comparison to the
overall time needed for FastVandermonde. Most of the computation time was in the two
executions of DDST.
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Chapter 7

Conclusion

In this project, we were able to implement three algorithms: FastEval, FastInterp, and
FastVandermonde, each of which requires O(n log2 n) arithmetic operations in F . This is a
nice upgrade from their classical quadratic running times. All three algorithms make use of
the subproduct tree and assume a fast multiplication algorithm for Fp[x]. The timings we
found during our experiments reflect the complexities we expected the algorithms to run.

A natural extension of this project would be to code these algorithms in C and compare
the timings to Maple. As seen in Bluestein’s section, there will most likely be a significant
improvement in the timings. Another extension of this project would be implementing the
fast Chinese remaindering algorithm detailed in [7]. It also utilizes the subproduct tree.
However, the reader should be aware that this algorithm also requires a fast Euclidean
algorithm.
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Chapter 8

Appendix A: Maple Code

FastFT:= proc(n,A,w,p) #Fast Fourier Transform of size n.

local n2,b,c,B,C,i,wi,T,D;

if n=1 then return A; fi;

D:=Array(1..n);

if n=2 then D[1] := A[1]+A[2] mod p; D[2] := A[1]-A[2] mod p; return D; fi;

n2:=n/2;

b:=Array(1..n2); c:=Array(1..n2);

for i from 0 to n2-1 do

b[i+1]:=A[2*i+1];

c[i+1]:=A[2*i+2];

od;

B:=FastFT(n2,b,w^2 mod p,p);

C:=FastFT(n2,c,w^2 mod p,p);

wi:= 1;

for i from 0 to n2-1 do

T:=wi*C[i+1] mod p;

D[i+1]:=B[i+1]+T mod p;

D[n2+i+1]:=B[i+1]-T mod p;

wi:=wi*w mod p;

od;

return D;

end:

poweroftwo:=proc(la,lb) #The next power of two > degree(a) + degree(b) + 1.

local c,d,m;

m:= (la-1)+(lb-1)+1; d:= 2;

while (d < m) do d:= 2*d; od;

return d;

end:
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FFTMult:= proc(a,la,b,lb,omega,p) #FFT Multiplication.

local A,B,Afft,Bfft,Cfft,C,da,db,n,i,nv,w;

if la <> lb or type(log[2](la),integer)=false then

n:= poweroftwo(la,lb);

A:= Array(1..n);

B:= Array(1..n);

for i from 1 to la do A[i] := a[i]; od;

for i from 1 to lb do B[i] := b[i]; od;

w:=nthroot(n,p);

else

n:=la;

A:= a;

B:= b;

w:=omega;

fi;

Cfft:= Array(1..n);

Afft:= FastFT(n,A,w,p);

Bfft:= FastFT(n,B,w,p);

for i from 1 to n do

Cfft[i] := Afft[i]*Bfft[i] mod p;

od;

C:= FastFT(n,Cfft,1/w mod p,p);

nv:=1/n mod p;

for i from 1 to n do

C[i]:=nv*C[i] mod p;

od;

return C;

end:

NextPOT:=proc(n) #The next power of two >= 2n-1.

local m;

m := 2; while m<2*n-1 do m := 2*m; od;

return m;

end:
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Bluestein:=proc(a,n,w,p) #Bluestein’s algorithm

local W,i,t,b,s,r,S,R,c,X,m,w1;

W:=Array(1..n);

W[1]:=1; W[2]:=w;

for i from 3 to n do

W[i]:=W[i-1]*w mod p;

od;

b:=Array(1..n); s:=Array(1..n);

b[1]:=W[1]; b[2]:=W[2];

s[1]:=W[1]; s[2]:=w^(-1) mod p;

for i from 3 to n do

t:=(i-1)^2 mod n;

b[i]:=W[t+1];

t:=-t mod n;

s[i]:=W[t+1];

od;

r:=Array(1..n);

for i from 1 to n do

r[i]:=a[i]*b[i] mod p;

od;

m:=NextPOT(n); w1:=nthroot(m,p);

R:=Array(1..m):

for i from 1 to n do

R[i]:=r[i];

od:

S:=Array(1..m):

for i from 1 to n do

S[i]:=s[i];

od:

for i from m-n+2 to m do

S[i]:=s[m-i+2]

od:

c:=FFTMult(R,m,S,m,w1,p);

X:=Array(1..n);

for i from 1 to n do

X[i]:=b[i]*c[i] mod p;

od;

return X;

end:
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FastNewton:=proc(g,x,n,p) #Fast Newton inversion.

local m,y,a,b,i,c,z,t,y1;

if n=1 then return 1/g mod p; fi;

m:=ceil(n/2);

a:=convert(taylor(g,x,m),polynom) mod p;

y:=FastNewton(a,x,m,p);

z:=Expand((1-g*y)/x^m) mod p;

z:=Expand(y*z) mod p;

z:=convert(taylor(z,x,n-m),polynom) mod p;

y:=y+Expand(x^m*z) mod p;

return y;

end:

RecipPoly:=proc(f,n,p) #Computes the reciprocal polynomial.

local res;

res:=Expand(x^n*subs(x=1/x,f)) mod p:

return(res);

end:

FastRem:=proc(f,g,x,p) #Fast Division algorithm that only returns the remainder.

local n,m,q,a,fr,b,c,r;

n:=degree(f);

m:=degree(g);

if n < m then return f; fi;

a:=RecipPoly(g,m,p);

a:=convert(taylor(a,x,n-m+1),polynom) mod p;

b:=FastNewton(a,x,n-m+1,p);

fr:=RecipPoly(f,n,p);

c:=Expand(fr*b) mod p;

c:=convert(taylor(c,x,n-m+1),polynom) mod p;

q:=RecipPoly(c,degree(c),p);

r:=f-Expand(g*q) mod p;

return r;

end:
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BUST:=proc(n,u,x,p) #Building Up the Subproduct Tree

local L,R,f;

if n = 1 then return [x-u[1] mod p] fi;

L := BUST(n/2,u[1..n/2],x,p);

R := BUST(n/2,u[n/2+1..n],x,p);

f := Expand(L[1]*R[1]) mod p;

[f,L,R];

end:

DDST:=proc(n,f,M,p) #Dividing Down The Subproduct Tree

local r0,r1;

if n = 1 then return f; fi;

r0:=FastRem(f,M[2][1],x,p);

r1:=FastRem(f,M[3][1],x,p);

[op(DDST(n/2,r0,M[2],p)), op(DDST(n/2,r1,M[3],p))];

end:

FastEval:=proc(n,f,u,p) #Fast Multipoint Evaluation.

local T,v;

T:=BUST(n,u,x,p);

v:=DDST(n,f,T,p);

return v;

end:

InterpWork:=proc(n,c,M,p)

local q,r0,r1,q0,q1,i,f,k;

if n = 1 then return c[1]; fi;

r0:=InterpWork(n/2,c[1..n/2],M[2],p);

r1:=InterpWork(n/2,c[n/2+1..n],M[3],p);

f:=Expand(r0*M[3][1]+r1*M[2][1]) mod p;

return f;

end:
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FastInterp:=proc(n,v,u,p) #Fast Interpolation.

local T,M,s,i,c,f,t;

T:=BUST(n,u,x,p);

M:=T[1];

s:=DDST(n,diff(M,x),T,p);

c:=Array(1..n);

for i from 1 to n do

t:=1/s[i] mod p;

c[i]:=Expand(v[i]*t) mod p;

od;

f:=InterpWork(n,convert(c,list),T,p);

return f;

end:

FastVandermonde:=proc(n,u,v,p)

#Fast method for solving a transposed Vandermonde system.

local T,M,D,MD,H,Q,s,a,t,i,r;

T:=BUST(n,u,x,p);

M:=T[1];

D:=add(v[i]*x^(n-i+1),i=1..n) mod p;

MD:=Expand(M*D) mod p;

H:=[coeffs(MD)];

Q:=add(H[i]*x^(n-i),i=1..n);

r:=DDST(n,Q,T,p);

s:=DDST(n,diff(M,x),T,p);

a:=Array(1..n);

for i from 1 to n do

t:=1/s[i] mod p;

a[i]:=Expand(r[i]*t) mod p;

od;

return convert(a,list);

end:
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SlowEval:=proc(f,u,n,p) #O(n^2) method for multipont evaluation.

local i,R;

R:=Array(1..n);

for i from 1 to n do

R[i]:=Eval(f,x=u[i]) mod p;

od;

return R;

end:

Interp(u,v,x) mod p; #O(n^2) method for interpolation.

VandermondeSolveMODP1:=proc(v,u,p)

#O(n^2) method for solving a transposed Vandermonde system.

local t,i,j,M,x,a,q,r,s,Q,temp;

t:=numelems(v);

M:=modp1(ConvertIn(1,x),p);

for i to t do

temp:=modp1(ConvertIn(x-m[i],x),p);

M:=modp1(:-Multiply(temp,M),p);

od;

a:=Vector(t);

for j to t do

Q:=modp1(Quo(M,ConvertIn(x-m[j],x)),p);

r:=1/modp1(Eval(Q,m[j]),p) mod p;

Q:=modp1(ConvertOut(Q),p); #dense list#

s:=add(v[i]*Q[i],i=1..t) mod p;

a[j]:=r*s mod p;

od;

a:=convert(a,list);

return a;

end:
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Chapter 9

Appendix B: C Code

#define LONG long long int

MUL64s computes a · b ∈ Fp.

LONG MUL64s(LONG a, LONG b, LONG p);

INV64s computes c−1 ∈ Fp.

LONG INV64s( LONG c, LONG p);

getomega64s returns a primitive n root of unity in Fp.

LONG getomega64s( LONG p, LONG n);

MultFFT64s computes A = A× B ∈ Fp using an FFT where A, B, and W are arrays of
size m, where m = 2k, and w is a primitive mth root of unity.

void MultFFT64s( LONG *A, LONG *B, LONG m, LONG w, LONG *W, LONG p);
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void ExtendBlueR(LONG *r, LONG n, LONG *R, LONG m)

{//Extend r of length n to R of length m, where m >= 2n-1 and m = 2^k.

LONG i;

for(i=0; i<n; i++) R[i] = r[i];

for(i=n; i<m; i++) R[i] = 0;

return;

}

void ExtendBlueS(LONG *s, LONG n, LONG *S, LONG m)

{//Extend s of length n to S of length m, where m >= 2n-1 and m = 2^k.

LONG i;

for(i=0; i<n; i++) S[i] = s[i];

for(i=m-n+1; i<=m-1; i++) S[i] = s[m-i];

for(i=n; i<=m-n; i++) S[i] = 0;

return;

}

LONG NextPow2(n)

{//Returns the next power of 2 that is >= 2n-1.

LONG t, m;

t = 2*n-1;

for(m=2; m<t; m = 2*m);

return m;

}
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void Bluestein(LONG *a, LONG n, LONG w, LONG *T, LONG p)

{ //a is the coefficient vector of length n,

//w is a primitive nth root of unity,

//T is an array of size 4n.

LONG i,t,m,w1;

LONG *b, *s, *r, *W, *R, *S, *W1;

if(n==1) return;

b = T; s = T+n; r = s+n; W = r+n;

W[0] = 1;

W[1] = w;

for( i=2; i<n; i++ ) W[i] = MUL64s(w,W[i-1],p);

b[0] = W[0];

b[1] = W[1];

s[0] = W[0];

s[1] = INV64s(w,p);

for(i=2; i<n; i++)

{ t = MUL64s(i,i,n);

b[i] = W[t];

t = MUL64s(n-1,t,n);

s[i] = W[t];

}

for(i=0; i<n; i++) r[i] = MUL64s(a[i],b[i],p);

m = NextPow2(n);

w1 = getomega64s(p,m);

R = array64s(m);

ExtendBlueR(r,n,R,m);

S = array64s(m);

ExtendBlueS(s,n,S,m);

W1 = array64s(m);

MultFFT64s(R,S,m,w1,W1,p);

for(i=0; i<n; i++) a[i] = MUL64s(b[i],R[i],p);

free(R);

free(S);

free(W1);

return;

}
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