
4

S I M O N F R A S E R U N I V E R S I T Y

SFU Logo

Fast parallel multi-point evaluation of sparse polynomials
Michael Monagan and Alan Wong. Department of Mathematics, Simon Fraser University
mmonagan@cecm.sfu.ca and cawong@sfu.ca

Introductionp

The sparse polynomial GCD algorithm of Hu and Mon-
agan [3] requires evaluating a multivariate polynomial
A (with s terms) into t bivariate images, for some un-
known t � s. These evaluations are the bottleneck of
their algorithm, and our problem is to improve this. We
outline their method below.

Input: A =
∑s

i=1 aiMi(x0, x1, . . . , xn), ai ∈ Zp

1. Kronecker map A(x0, x1, . . . , xn) 7→ Â(x0, x1, y).
2. Let Â(x0, x1, y) =

∑s
i=1 aiXiy

mi, where Xi is a mono-
mial in x0, x1. Find a primitive α ∈ Zp and compute
βi = αmi for i = 1..s.

3. Let T be the current guess for t. Evaluate Â at y =

α0, α1, . . . , αT−1 by computing γi = Â(x0, x1, α
i) in

the following matrix-vector multiplication:
1 1 · · · 1

β1 β2 · · · βs
...

βT−1
1 βT−1

2 · · · βT−1
s



a1X1

a2X2

...
asXs

 =


γ0

γ1

...
γT−1


The above can be done in O(sT + nd + ns) multiplica-
tions in Zp [3]. Using the fast sparse multi-point eval-
uation described by van der Hoeven and Lecerf in [2]
(originating from [1]), we can do better!

Our parallel algorithm and implementation reduces the
O(sT) cost toO(slog2T) under reasonable assumptions.

We begin by sorting the terms of Â into buckets on the
monomials xj0x

k
1. Example:

Â = 5yx3
0x1 + 3yx2

0x
2
1 + 7y19 + 2x2

0x
2
1 + y401x2

0x
2
1

5y

x3
0x1

y401 + 3y + 2

x2
0x

2
1

7y19

1

We operate on each bucket separately as a sparse uni-
variate polynomial in y.

Fast Sparse Multi-Point Evaluation

Let Âjk(y) =
∑sjk

i=1 aiy
mi be the polynomial in bucket xj0x

k
1. We parallelize on Âjk. The

main idea of fast evaluation [2, 1]:

Âjk(α
0), . . . , Âjk(α

T−1) are the first T coefficients of
the power series expansion of the rational function

f (u) =
sjk∑
i=1

ai
1− βiu

• split f (u) into blocks B1(u), . . . , Bdsjk/T e(u) of size ≤ T

•divide-and-conquer to compute the numerator/denominator of Bi(u) = Ni(u)/Di(u)

• fast series inversion to get the power series expansion of Bi(u) to O(uT)

• cost: O(d sTeM(T)logT)→ O(slog2T) with FFT multiplication

As we don’t know t, we use a bottom-up approach. Starting with a small guess T , we
compute T evaluations to test for stabilization of the image GCD. If not stabilized, set
T := 2T and repeat. To combine two adjacent blocks of size T into a 2T block we use:

BL + BR =
NL

DL
+
NR

DR︸ ︷︷ ︸
from prev step

=
NLDR + NRDL

DLDR︸ ︷︷ ︸
use fast multiplication

=
N

D
(1)

We illustrate an example of the computation for Â = (3y6)x2
0x1 + (y13 + 8y2 + 14y14 +

12)x3
0 + (5y7 + y4 + 11y)x0x1 over Z17, with α = 3:

x2
0x1 x3

0
x0x1

3y6 y13 8y2 14y14 12 5y7 y4 11y

T
=

1 3

1− 36u

1

1− 313u

8

1− 32u

14

1− 314u

12

1− u
5

1− 37u

1

1− 34u

11

1− 3u

3 + O(u) 1 + O(u) 8 + O(u) 14 + O(u) 12 + O(u) 5 + O(u) 1 + O(u) 11 + O(u)

T
=

2

14u + 9

6u2 + 13u + 1

13u + 9

2u2 + 14u + 1

9u + 6

7u2 + 10u + 1

3 + 11u + O(u2) 9 + 16u + O(u2) 9 + 6u + O(u2) 6 + 0u + O(u2) 11 + 16u + O(u2)

T
=

4

4u3 + 12u2 + 15u + 1

12u4 + 8u3 + 3u2 + 10u + 1

16u2 + 16u

13u3 + 11u2 + 7u + 1
3 + 11u + 12u2+

10u3 + O(u4) 1 + 5u + 10u2 + 0u3 + O(u4) 0 + 16u + 6u2 + 3u3 + O(u4)

Parallelize each level for N cores (using Cilk C):

•Count the number of total blocks bT which require computing their N/D using (1).
In the example b1 = 8, b2 = 3 and b4 = 2. Assign dbTNe blocks to each core.
•For the series expansion, we divide the buckets into N subsets of roughly equal work.

Benchmarksp

•Generating random sparse polynomials with s terms and
9 variables
•degree in each variable ≤ 10, total degree ≤ 60

• run the algorithm until we get at least t images
•using an Intel Xeon server at 2.8/3.6 GHz, max theoret-

ical speedup is 12.44 = 2.8/3.6 × 16

Matrix Fast
s t 1 core 16 cores Speedup 1 core 16 cores Speedup

107 102 7.35 0.73 10.0x 11.18 1.45 7.7x
107 500 32.67 2.71 12.0x 27.83 2.77 10.1x
107 103 64.32 5.29 12.2x 38.94 3.63 10.7x
107 104 633.51 51.43 12.3x 92.25 7.77 11.9x
107 105 6335.26 516.44 12.3x 155.58 12.72 12.2x
108 104 6198.68 553.84 11.2x 890.20 74.48 12.0x
108 105 - 5852.47 - 1374.74 112.52 12.2x
108 106 - - - 2045.96 164.96 12.4x

We inserted our fast evaluation implementation into the
GCD code of [3]. PolynomialsG, Ā, B̄ were created with
#G,#Ā,#B̄ terms (respectively), 9 variables, degree in
each variable ≤ 20, and total degree ≤ 60.

We then constructedA = G·Ā andB = G·B̄ as inputs to
the GCD algorithm. t is the number of images required,
and (eval) is the % of time spent in the evaluations. 16
cores were used for the Fast/Matrix timings.

#A #G t Fast (eval) Matrix (eval) Maple Magma
105 103 36 0.1 (76%) 0.1 (55%) 341.9 63.6
106 103 40 0.5 (88%) 0.2 (66%) 5553.5 FAIL
106 104 264 0.8 (82%) 0.6 (74%) 62520.1 FAIL
107 104 256 5.8 (90%) 4.5 (88%) - -
107 105 2334 13.5 (77%) 36.1 (91%) - -
107 106 24214 91.1 (32%) 395.7 (85%) - -
108 104 246 46.2 (89%) 45.8 (91%) - -
108 105 2328 96.3 (92%) 369.2 (98%) - -
108 106 24214 214.9 (69%) 3691.1 (98%) - -
108 107 242574 3058.1 (11%) 39643.0 (93%) - -

References

[1] A. Bostan, G. Lecerf, É. Schost. Tellegen’s principle into prac-
tice. Proceedings of ISSAC 2003, ACM, 37–44, 2013.

[2] Joris van der Hoeven and Grégoire Lecerf. On the bit-
complexity of sparse polynomial and series multiplication. J.
Symbolic Comput., 9:227–254, 2013.

[3] Jiaxiong Hu and Michael Monagan. A fast sparse parallel poly-
nomial GCD algorithm. Accepted for ISSAC 2016, 2016.

