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Perspective

The remarkable result of equidistribution was proven for matchings and partitions by Chen et al. 1n 2003. Since
then, there has been a great deal of work done on crossing and nesting in other combinatorial objects, specif-
ically permutations and graphs. Our goal is to understand the distribution of these four structures according
to crossings and nestings using bijections, generating functions and continued fractions. We also give a new
result and make a conjecture about the equidistribution of permutations.
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Example.

Definition An object 1s k-noncrossing (k-nonnesting) if
none of the arcs form a k-crossing (k-nesting).
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This 1s an example of a 4-noncrossing and 4-nonnesting
partition. A crossing (2-crossing) is illustrated above in
red. A 3-nesting 1s illustrated in blue.

Equidistribution

Define:
Ne(k,n) := the total number of k-nestings in an object of size n;
Cr(k.n) := the total number of k-crossing in an object of size n.

F(i, j,n) := the total number of objects with i crossings and j nestings.
N(n,1i, j) := the number of objects of size n with maximum nesting of size i, crossing of size j.

A summary of results:

Object Ne(l,n) = Cr(l,n) Ne(2,n) = Cr(2,n) F(, j,n) = F(j,i,n) N(n,i, j) = N(n, j,i)
Matching folklore deS83 ChO7 ChO07
Partitions folklore FoZe90 ChO7 ChO07

Graphs deMO7

Permutations FoZe90 Co07 Con;.

Revised statistics

Notice that a singleton under an arc 1s not considered a nesting for a partition, nor 1s two arcs that connect
at a single vertex considered a crossing. Despite this, alternative definitions for crossings and nestings can be

defined such that this is the case, specifically enhanced crossings and nestings.
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Arc annotated sequences tor n = 4

In the following table we show all arc annotated sequences for matchings, partitions and permutations when
n = 4. We place similarly colored boxes around sequences which have the same number of 2-nestings.
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Bijections with lattice paths

Matchings
Bijection ® (FI80)

* B>,: matchings on {1, 2, .
o D<W1>

., 2n}

= (Wi, Wo,...,Woy,)
Steps
Vertex type | Step
& /
R AN

Dyck paths of length n with weight vector

Weight may be up to 4; — 1, the maximum height at

step i minus 1.

Example.
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Weight vector wl = (0,0,0,2,0,0,2,0,1,0).

Permutations

Bijection ®3

e S,: permutations of {1,2, ...

, n}.

Partitions
Bijection @

e P,: Partitions on the set {1,2,...,n}.

« MW2>: Bicolored weighted Motzkin paths of length
n with weight vector w2 = (wy,wa, ..., wy)
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Weight may be up to /; — 1, the maximum height at step
i minus 1.

Example

Weight vector (0, 0,0,2,0,1,0,0,0).

e MW3>: bicolored Motzkin paths of length n with weight Graphs
vector w3 = (wq, wo, ..., wy). Each w; may be up to the height of step i.

Example.

Weight vector: (0,0,2,1,0,0,[1, 0], [0, 0])

e May have multi-edges.

* A bijection with lattice paths 1s not
obvious.

Continued fractions

We use the bijections to find a single generating function for three of the
classes, marking length and nestings.

* Flajolet 1980 enumerates Motzkin paths using continued fractions.

e Let MU' be the generating function for Motzkin paths of maximum height
L.

* Mark north steps of height i by q;, south steps of height i by b; and east
steps of height i by c;.

« M0 = 1_ , (a series of east steps.)
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In the bijections seen above, a weight greater than O 1n the lattice path indi-
cated a nesting. The greatest weight that could be assigned was h; — 1, the
maximum height at that step minus one.

Let x mark length and y mark number of nestings. We perform the mapping:
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We can expand these expressions.

Matchings g = 2:

B(x,y) = 1+(D)x>+Q2+0)x*+(5+6 y+3 y?+y)x0+(14+28 y+28 y2+20 y  +. ..

Partitions g = 1:

P(x,y) = 14+x+2 X" +50+(y + 14) x*+(y* + 9y +42) O+ 2y +14y°+. ..

Permutations g = 0O:

S(x,y) = L+ (Dx+ Qx> +G+Y)x +(14+8 y+2y)x* + ¥ +7y3 +25y%+. ..

From the diagram we see 1 matching with a nesting (blue), 1 partitions with
a nesting ( ), 8 permutations with one nesting (red) and 2 with two nest-

ings ( ).
New result

Theorem:[Burrill and Mishna] Define:
NE(n, k) := the number of permutations in S, with a k-nestings.

CR(n, k) := the number of permutations in S, with a k-crossing.

Then,

n")_ m! ifn=2m+1;
| (m - 1)!(2m2 — D +2(m") -1 1fn =2n.

Proof: n=2m+1:
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Conjecture For alln > 2, k > 0, NE(n, k) = CR(n, k) where k 1s maximal.
Evidence: For n < 10:
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