
Bad and Unlucky Evaluation points

(1) For the resultant computation, we must not choose any evaluation points that
decrease the degree of y in m2 (called bad evaluation points).
(2) For the gcd computation, we must also not choose evaluation points that decrease
the degree of y in any polynomial in the sPRS (called unlucky evaluation points).

We provide two example cases in which unlucky evaluation points are encountered.

Ex 1. The sPRS starting from m1(y) = y3− 2y2− 1 and g(x, y) = x2− 5xy2− x+ 4 over Z17[x] is:

f1(x, y) = m1(y) = y3 − 2y2 − 1, f2(x, y) = g(x, y) = x2 − 5xy2 − x + 4,

f3(x, y) = (5x3 + 12x2 + 3x)y + 7x3 + 2x2 + 11x,

f4(x, y) = x6 + 11 x5 + 6x4 + 8 x3 + 7 x2 + 6x + 13, f5(x, y) = 0.

On the other hand, the sPRS starting from m1(y) and g(x = 6, y) is:

f̂1(y) = y3 + 15 y2 + 10, f̂2(y) = 4y2, f̂3(y) = 13, f̂4(y) = 0.

The next-to-last polynomial f̂2 is not linear and is not equal to f3(x = 6, y).

Ex 2. The sPRS starting with m1(y) = y4 + 15 + 11 y2 and g(x, y) = x3 + 8 yx+ 15 y3 over Z17[x] is:

f1(x, y) = m1(y) = y4 + 15 + 11 y2, f2(x, y) = g(x, y) = x3 + 8 yx + 15 y3,

f3(x, y) = (10 + 16x)y2 + 2x3y + 9,

f4(x, y) = (15x6 + 11 + 2x3 + 11x2)y + 13x5 + 12x4 + 16x3,

f5(x, y) = x12 + 8 + 7x8 + 5 x7 + 12 x6 + 2 x4 + 11 x3 + 4 x2 + 5 x, f6(x, y) = 0.

On the other hand, the sPRS starting with m1(y) and g(x = 10, y) is:

f̂1(y) = m1(y), f̂2(y) = 15y3 + 12y + 14, f̂3(y) = 11y + 9, f̂4(y) = 11, f̂5(y) = 0.

The next-to-last polynomial is linear, but corresponds to the degree 2 polynomial, f3.

Theorem 1. Let d1 = degy(m1) and d2 = degx(m2).
The number of bad evaluation points in Z is at most d2.
The number of unlucky evaluation points in Z is at most d2d1(d1 + 1)/2.

Theorem 1 implies that the number of unlucky evaluation points is “small”.
We do not know a priori the number of polynomials in the sPRS of m1(y) and g(x, y).
Hence to detect an unlucky evaluation point, we proceed as follows.
Let k = # of polynomials in the sPRS obtained using the first evaluation point.

1. Compute sPRS using the next evaluation point. Let S = (# polynomials in sPRS).

2. a) If S < k, discard current sPRS.
b) If S > k, discard all previous sPRS’s. Set k to S.
c) If S = k, keep the sPRS. Go to step 1.

Cost

Theorem 2. Let d1 = deg(m1) and d2 = deg(m2). The overall cost of computing
the resultant over Zp and the gcd above over Zp[x]/〈mγ(x) mod p〉 is

O
([
d3

1d2 + d2
1d

2
2)
]

+ d4
1

)
arithmetic operations in Zp.

[Remark: if d1 ≤ d2, this cost simplifies to O(d2
1d

2
2).]

In comparison, the costs of computing the resultant and the gcd using the Euclidean
algorithm are O(d4

1d
2
2) each.

References

[1] Trager, B. Algebraic Factoring and Rational Function Integration. Proceedings of the 1976 ACM Symposium on Symbolic
and Algebraic Computation, 1976.

[2] Collins, G.E. The calculation of multivariate polynomial resultants. J. Assoc. Comput. Mach. 18 (1971), 515-532.

[3] Monagan, M. Maximal Quotient Rational Reconstruction: An Almost Optimal Algorithm for Rational Reconstruction.
Proceedings of ISSAC ’04, ACM Press, p. 243-249, 2004.

Let us call c ∈ Z which produces a non-square-free resy(m2(x− cy),m1(y)) unlucky.
One can characterize the number of unlucky c ∈ Z as follows.

Lemma 3. Let r(x) = resy(m2(x − c · y),m1(y)) ∈ K[x] be as in Lemma 2. An
element c ∈ Z is unlucky iff it is a root of

resx(r(x), r′(x)) ∈ K[c].

One can express the number of unlucky c’s in terms of the degrees of the minimal
polynomials as follows.

Lemma 4. Let d1 = degy(m1) & d2 = degx(m2). The # of unlucky c ∈ Z is at most[
d2

1d2(d2 − 1)
]
/2.

By Lemma 2, to determine the minimal polynomial for a primitive element γ = β+ cα
we must compute the resultant of a bivariate m2(x− cy) and a univariate m1(y).
For this we propose to use evaluation & interpolation in x at σ1, σ2, ... ∈ Z.

Evaluation & interpolation reduces the problem of computing a bivariate resultant to
that of computing a series of univariate resultants of m2(σi − cy, y) and m1(y) over
K. To compute the univariate resultants, we use polynomial remainder sequences:

Definition 3. Let R be a ring and f1, f2, . . . , fk+1 be polynomials in R[x]. Then
{f1, f2, . . . , fk+1} is a Polynomial Remainder Sequence (PRS) if and only if:

• deg(f1) ≥ deg(f2),

• fi 6= 0 for i = 1, . . . , k and fk+1 = 0, and

• fi = ai · prem(fi−2, fi−1) for i = 3, . . . , k + 1 and ai ∈ R.

There are numerous types of PRS’s. We will use the subresultant PRS (sPRS) [2].
The last non-zero polynomial of sPRS starting from f1(x) and f2(x) equals resx(f1, f2).

Step 2: Finding α(γ), β(γ) ∈ K(γ)

To perform arithmetic in K(γ), one must represent α and β as elements in K(γ),
which we denote by α(γ) and β(γ), respectively. For this we use the following lemma.

Lemma 5 [1]. Let g(x, y) = m2(x − c · y, y) be square-free and let γ = β + c · α
(note that γ is a root of g(x, α)). Then

G(γ, y) = gcd(g(γ, y),m1(y)) = y − α(γ) ∈ K(γ)[y].

Moreover, β(γ) = γ − c · α(γ) ∈ K(γ).

Thus to obtain α(γ) and β(γ) one could compute a gcd over K(γ). For efficiency, we
instead propose to use the sPRS’s computed in Step 1 as follows.

1. Obtain degy(m1) · degx(m2) next-to-last polynomials appearing in the sPRS starting
from m2(β − cy, y) and m1(y), which are linear in y.

2. Interpolate polynomials in step 1 to get G(x, y) ∈ K[y][x].

3. Solve G(x = γ, y) = 0 to obtain α(γ).

4. Find β(γ) using the formula γ − cα(γ).

Recall that K = Q(α, β) ∼= Q[x, y]/〈m1,m2〉. One can show that all the above
lemmas apply to the ring Φp(K) = Zp[x, y]/〈m1 mod p, m2 mod p〉 as long as p is
“appropriately” chosen and no zero divisors are encountered during computation.

Unfortunately, not all elements in Zp can be used as evaluation points:

Motivation

Let K = Q(α1, · · · , αt) ∼= Q[u1, · · · , ut]/〈m1, · · · ,mt〉 be a number field with t > 1
extensions.

How should we perform arithmetic over K? (ex. multiply f, g ∈ K[x])?

Overview of Strategy

1. Find a primitive element γ = c1α1 + c2α2 + · · · + ctαt of Q(α1, · · · , αt) satisfying
Q(α1, · · · , αt) ∼= Q(γ), where c1, · · · , ct ∈ Z, and the minimal polynomial for γ,
mγ(x) ∈ Q[x].

2. Express αi’s as elements in Q(γ), 1 ≤ i ≤ t.

3. Perform arithmetic in Q(γ).

4. Convert the result back to Q(α1, · · · , αt).

In this poster, we only consider the case of t = 2. This idea is easily generalized to
arbitrarily (finitely) many extensions. Moreover, for efficiency purposes we map the
coefficient field Q to Zp, for an appropriate primes p and perform arithmetic over Zp,
then convert the solution back to K using rational number reconstruction [3].

Example

Let K = Q(α, β) ∼= Q[x, y]/〈m1,m2〉 where m1(y) = y2 − 2 and m2(x, y) = x2 − 3
are minimal polynomials for α and β respectively. Let p = 17 and let

r(x) = resy(m2(x− 1 · y, y),m1(y)) = x4 + 7x2 + 1 ∈ Zp[x].

Since r(x) is square-free, Zp(α, β) ∼= Zp(γ = β + 1 · α) ∼= Zp[x]/〈r(x)〉 and r(x) ∈
Zp[x] is the minimal polynomial (mod p) for γ. Furthermore, let

G := gcd(m2(γ − 1 · y, y),m1(y)) = gcd(γ2 − 3γy + 1, y2 − 2) = y + 8γ3 + 13γ.

Thus α(γ) = y −G = −8γ3 + 13γ and β(γ) = γ − 1 · α(γ) = 8γ3 + 14γ.

Now we can work over one extension K(γ) rather than in two extensions K(α, β).

Step 1: Finding a Primitive Element using Resultants

In what follows we let K be a field of characteristic 0 and let m1(x) ∈ K[x] and
m2(x) ∈ K(α)[x] be the minimal polynomials for α and β respectively.

Lemma 1. Let f, g ∈ K[x, y]. The resultant of f and g with respect to y, denoted
by resy(f, g), is the polynomial r in K[x] that satisfies

r(α) = 0 ⇐⇒ gcd(f (α, y), g(α, y)) 6= 1.

Definition 2. Let f ∈ K[x]\{0}. We say that f is square-free iff resx(f, f
′) 6= 0.

To find a primitive element γ satisfying K(α, β) ∼= K(γ), we utilize Lemma 2:

Lemma 2 [1]. Let the field be K(α, β) = K[x, y]/〈m1,m2〉. If m2(x, α) ∈ K(α)[x]
is square-free, then there exists c ∈ Z such that

r(x) := resy(m2(x− c · y),m1(y)) ∈ K[x]

is square-free. Furthermore, r(x) is the minimal polynomial for a primitive element
γ = β + c · α of K(α, β) so that K(α, β) ∼= K(γ) = K[x]/〈r(x)〉.

Cory Ahn, Michael Monagan (CECM, Simon Fraser University)

Faster Arithmetic over Multiple Algebraic Extensions

