Faster Arithmetic over Multiple Algebraic Extensions

Cory Ahn, Michael Monagan (CECM, Simon Fraser University)

SFU

Motivation

et K = Q(ay, -+ ,0¢) = Qlug, -+ ,ue]/(mq,--- ,my) be a number field with ¢ > 1
extensions.

How should we perform arithmetic over K7 (ex. multiply f,g € K|x])?

Overview of Strategy

1. Find a primitive element v = ciay + coas + - - - + ¢y of Q(avy, - -+, ay) satisfying
Qay, - ,a¢) = Q(v), where ¢1,--- ,¢; € Z, and the minimal polynomial for -,
m.(x) € Q|x].

2. Express a;'s as elements in Q(7v), 1 <7 <t.
3. Perform arithmetic in Q(7).
4. Convert the result back to Q(ayq, -+, ay).

In this poster, we only consider the case of ¢ = 2. This idea is easily generalized to
arbitrarily (finitely) many extensions. Moreover, for efficiency purposes we map the
coefficient field QQ to Z,, for an appropriate primes p and perform arithmetic over Z,,
then convert the solution back to K using rational number reconstruction [3].

Example

et K = Q(a, 8) = Q[z,y|/{m1, m>) where mi(y) = y* — 2 and my(x,y) = 2° — 3
are minimal polynomials for o and 3 respectively. Let p = 17 and let

r(z) = res,(mo(z — 1-y,y),mi(y)) = 2* + 72" + 1 € Zy[z].

Since r(z) is square-free, Z,(a, 8) = Zy(y = 8+ 1-«a) = Zy|x]/(r(x)) and r(x) €
Z,|z| is the minimal polynomial (mod p) for . Furthermore, let

G = ged(ma(y — 1-y,9),mu(y)) = ged(v” = 3vy + 1,5° — 2) =y + 8y’ + 13y.

Thus a(v) =y —G = -8y +13y and B(y)=7—1-a(y) =8y + 14y.

Now we can work over one extension K () rather than in two extensions K (a, 3).

Step 1: Finding a Primitive Element using Resultants

In what follows we let K be a field of characteristic 0 and let m;(z) € Klz| and
ms(x) € K(a)|x| be the minimal polynomials for o and (3 respectively.

Lemma 1. Let f,g € K|x,y|. The resultant of f and g with respect to ¥, denoted
by res,(f,g), is the polynomial r in K |x] that satisfies

ria) =0 < gcd(f(a,y),9(,y)) # 1.

Definition 2. Let f € K|x|\{0}. We say that f is square-free iff res,(f, f') # 0.

To find a primitive element ~ satisfying K (o, 5) = K(7), we utilize Lemma 2:

Lemma 2 [1]. Let the field be K(«, 5) = K|z, y]/{(mi, ms). If mo(z,) € K(a)|x]

Is square-free, then there exists ¢ € Z such that
r(x) = res,(mo(z — c-y),mi(y)) € K|z]

is square-free. Furthermore, r(x) is the minimal polynomial for a primitive element

v=p0+c-aof K(a,0) sothat K(a, 8) = K(v) = K|x|/{(r(x)).

Let us call ¢ € Z which produces a non-square-free res,(ms(z — cy), mi1(y)) unlucky.
One can characterize the number of unlucky ¢ € Z as follows.

Lemma 3. Let r(x) = res,(mo(x — ¢ - y),mi(y)) € K|z] be as in Lemma 2. An
element ¢ € Z is unlucky iff it is a root of

res,(r(x),r'(z)) € K[d].

One can express the number of unlucky c's in terms of the degrees of the minimal
polynomials as follows.

Lemma 4. Let d; = deg,(m;) & dy = deg,(m2). The # of unlucky c € Z is at most

(d2dy(dy — 1)] /2.

By Lemma 2, to determine the minimal polynomial for a primitive element v = 3 + ca
we must compute the resultant of a bivariate mo(z — cy) and a univariate m;(y).
For this we propose to use evaluation & interpolation in = at 01,09, ... € Z.

Evaluation & interpolation reduces the problem of computing a bivariate resultant to
that of computing a series of univariate resultants of ms(o; — cy,y) and m4(y) over
K. To compute the univariate resultants, we use polynomial remainder sequences:

Definition 3. Let R be a ring and fi, fo,..., fr.1 be polynomials in R|z|. Then
{fi, fo, ..., fxs1} is a Polynomial Remainder Sequence (PRS) if and only if:

o deg(f1) > deg(fs),
of,#0fort=1,...,kand f;1 =0, and
o fi=ua; prem(f;_o, fi_1)fori=3,...,k+1and a; € R.

There are numerous types of PRS’s. We will use the subresultant PRS (sPRS) [2].
The last non-zero polynomial of sPRS starting from fi(x) and fy(x) equals res,(f1, fo).

Bad and Unlucky Evaluation points

Step 2: Finding a(v), B(v) € K(v)

To perform arithmetic in K (), one must represent o and [as elements in K(7),
which we denote by a(v) and (), respectively. For this we use the following lemma.

Lemma 5 [1]. Let g(z,y) = mao(x — c- y,y) be square-free and let v = S+ ¢ - «
(note that v is a root of g(x,). Then

G(v,y) = ged(9(v,y), mi(y)) =y — aly) € K(7)y).

Moreover, 5(v) =~v —c- a(y) € K(v).

Thus to obtain a() and () one could compute a gcd over K (). For efficiency, we
instead propose to use the sPRS’s computed in Step 1 as follows.

1. Obtain deg,(m;) - deg,(mo) next-to-last polynomials appearing in the sPRS starting
from ms(8 — cy,y) and my(y), which are linear in y.

2. Interpolate polynomials in step 1 to get G(x,y) € K|y||x|.
3.Solve G(x = ,y) = 0 to obtain a(7).

4. Find 5(7) using the formula v — ca(7).

Recall that K = Q(a, 8) = Qlz,y|/{(m1,ms). One can show that all the above
emmas apply to the ring ¢,(K) = Z,|x,y]/(m; mod p, my mod p) as long as p is
“appropriately” chosen and no zero divisors are encountered during computation.

Unfortunately, not all elements in Z, can be used as evaluation points:

(1) For the resultant computation, we must not choose any evaluation points that
decrease the degree of y in my (called bad evaluation points).

(2) For the gcd computation, we must also not choose evaluation points that decrease
the degree of y in any polynomial in the sPRS (called unlucky evaluation points).

We provide two example cases in which unlucky evaluation points are encountered.

Ex 1. The sPRS starting from my(y) = y°> — 2y> — 1 and ¢(z,y) = 2> — bay® — x + 4 over Zy7[z] is:

fi(z,y) = mi(y) = . fo(z,y) = g(z,y) = 27 — Say” — x + 4,
fa(x,y) = (5:133 + 1222 + 3x)y + 7x3 + 222 + 11z,
fa(xyy) =2+ 1127 + 62t + 807 + 707+ 6a + 13, fz(z,y) =0.

On the other hand, the sPRS starting from m(y) and g(z = 6,y) is:

fi(y) = : . fa(y) = 4y?, f3(y) =13, fa(y) =0.
The next-to-last polynomial fo is not linear and is not equal to f3(x = 6,y).

Ex 2. The sPRS starting with m(y) = y*+ 15+ 11 y? and ¢(z, y) = 2> +8yx + 15y over Z;7[z] is:

fi(z,y) =my(y) = , fo(w,y) = g(z,y) =27 + 8yx + 15y,
fa(x,y) = (10 + 162)y” + 227y + 0,

fa(x,y) = (15:156 + 11 + 222 + 11:132)y + 1322 + 1224 + 16m3,

fs(z,y) =22 +84+ 728 +52"+ 1220+ 220 + 1128 + 422 + 52, fe(x,y) = 0.

On the other hand, the sPRS starting with m(y) and g(x = 10, y) is:

fi(y) = fa(y) = 1597 + 12y + 14, fa(y) = 11y + 9, fa(y) =11, f5(y) = 0.

The next-to-last polynomial is linear, but corresponds to the degree 2 polynomial, f3.

Theorem 1. Let d; = deg,(m;) and dy = deg,(my).
The number of bad evaluation points in Z is at most ds.
The number of unlucky evaluation points in Z is at most dyd;(d; + 1) /2.

Theorem 1 implies that the number of unlucky evaluation points is “small”.

We do not know a priori the number of polynomials in the sPRS of m;(y) and g(z,y).
Hence to detect an unlucky evaluation point, we proceed as follows.

Let £ = # of polynomials in the sPRS obtained using the first evaluation point.

1. Compute sPRS using the next evaluation point. Let S = (# polynomials in sPRS).

2.a) If S < k, discard current sPRS.
b) If S > k, discard all previous sPRS’s. Set k to S.
c) If S =k, keep the sPRS. Go to step 1.

Cost

Theorem 2. Let d; = deg(m;) and dy = deg(ms). The overall cost of computing
the resultant over Z, and the gcd above over Z,|x|/(m-(x) mod p) is

O ([di’dg + d%d%)} + dil) arithmetic operations in Z,,.

[Remark: if d; < d», this cost simplifies to O(d5d3).]

In comparison, the costs of computing the resultant and the gcd using the Euclidean
algorithm are O(d{d3) each.

References

1] Trager, B. Algebraic Factoring and Rational Function Integration. Proceedings of the 1976 ACM Symposium on Symbolic
and Algebraic Computation, 1976.

[2] Collins, G.E. The calculation of multivariate polynomial resultants. J. Assoc. Comput. Mach. 18 (1971), 515-532.

[3] Monagan, M. Maximal Quotient Rational Reconstruction: An Almost Optimal Algorithm for Rational Reconstruction.
Proceedings of ISSAC '04, ACM Press, p. 243-249, 2004.

