Recovery of exponents of polynomials of high degree
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Intr OdllCtl()n [ Question: How do we recover the exponents? ‘ Recoverlng the Exponents
Polynomial interpolation is the problem of fitting a polynomial to a Once we have sorted the 1images, we can apply a generalized
set of data. We represent this process with the Black Box model of How do we recover the exponents e; from their images mod- form of the Chinese remainder theorem to recover the expo-
polynomial interpolation. ulo p; — 1? We recover the exponents by applying a general- nents.
The Black Box Model ' ' ' ' ' ' - - - -

e Black Box Mode 1z§d form. of Ch1nes§ remaindering which does not require rel Generalized Chinese Remainder Theorem Let . ..., m,
Let f € Z[xq, w9, ..., zp]. The goal is to interpolate f from a set of atively prime modull. be positive integers. Let M = LCM (my, ..., m,), and let

luations. : : :
cvaluations Meth()d ui, ..., Us be any integers. There exists exactly one integer u

(72500 EZ" . F(17250-7m) EZ o hod o th hor such that,
> > ur method requires that we use smooth primes. iu = u;(modm,;),1 <i<s,and

The interpolation method presented in this poster is a sparse interpo- Definition A prime p is y-smooth if for every prime q‘ p—1we ”) 0 <u<M,
lation method. have g < . iff u; = u,; (mod gcd(m;, m;)),1 <1< 7 <s. 2]

Definition Let f € R|x{,x9, ..., x|, where R is aring and deg f = d. We pick s smooth primes of the form p = oy 4 1, so that
Let ¢ denote the number of non-zero terms of f and 7},,,, denote the

n+d). LOM(pl—l,pQ—l,...,pS—l) > d.

maximum possible terms of f. f is sparse if t < Tj,q0 = ( d

The theorem bellow encapsulates that if the exponents are unique
mod o, then their modular images are unique mod 0 and pair

We interpolate f modulo a set of primes py, po, ..., ps and use Chi- For each prime we interpolate a set £ mod p — 1 by running up into sets from which we can recover the exponents.
nese remaindering to recover the integer coefficients. We use a the following procedure. See [4] T vermein (L i, = G i = S, . e = Gie, AN
Kronecker substitution to reduce multivariate interpolation to a uni- o ’ B A
variate interpolation. P Procedure Interpolate Exponents mod p-1: M = LCM(m,,...,ms). Let E be a set of £ non negative
Definition Let D be an integral domain. Let f € Dlxy, zo. ... 2], f % INPUT: Black Box polynomial g and a prime p. integers. Let 1, ..., E, be sets such that, E;, = {x mod m;, :
0. Letr = [ry, 7o, .. vy 1] € Z" L rs > 0. Let Ky - D]z, 29, .., 2n] — OUTRUT: E modp — 1. re E} 1< k.§ s.It B c01.1tains distinct elements modulo
D|[x] be the Kronecker substitution K, (f) = f(z, 2™, 272, . g"72Tn-1), (1) Pick a generator o € Z,,. 0, then there exists exactly ¢ integers, u, uo, ..., u; such that
Let d; = degy, f be the partial degrees of f,1 < ¢ < n. K is invert- For 1 < j <2t — 1 compute v; = g(&j). 1) 0 <u; < M,
ibleifr; >d;, 1 <1<n—1. . T . 1 1 . . .
ible if r i <n (2) Compute A(z) — H§:1 (z — o o p—l) from the evalua- (1) for each wu;, there exist exactly s integers u1;, ui“ cory Ui
Example Let f(z, v, ) = 204322 + 322y + 72223 + 5. K, (f) = tions v; with the Berlekamp Massey algorithm. such that 31@' € by, uy € By, ..., uy € B, and u; = ug(mod
fla, z°, 2> = 20°7 + 3227 + 7292 + 52V, mk), 1 <k <s.
(3) Compute the roots of A\(z) : a®, a®, ..., a%(mod p).
After applying the Kronecker substitution the degree of the polyno- 4) , , , .
mial becomes exponential in n. In this poster we present a modular ( Solve mod p-1 by taking the discrete logarithm: Example:
algorithm for recovering the exponents. log,,(a“) modp = e;modp — 1. [1] f )
FE1=165,97,124, 189, 300 pr=10-31+1
Problem Fy = {377,394, 509,680,965}  po = 10-97 + 1
Let f € Z[xq...,zy], with K,(f) = g(z) = a1z + a9x® + . . . + apx®, /E mod p; — 1\ Fs =120, 34,57,89, 115} p3 = 101341
— — is to 1 E — 1 _ _ ‘
and degg = d. let E = {eq, e, ..., e¢}. Our goal is to interpolate F. (E:Eponents mod p — 1) _ mO(.i D2 E, = {357 100, 119, 217, 254} py=10-33+1
We first interpolate the exponents modulo a set of primes minus 1. \ o mo(.j b1 / Notice F, mod § gives E| = { 65. 97,124, 189, 300} mod 10
i = {5,7,4,9,0}, and therefore the exponents are unique mod
E mod p; —1 . ,
. ( E mod poy — 1\ Sortlng the Exponents mod p-l 0 = 10. Now the images can be sorted mod o.
: T'he order is unknown.
E mod ps— 1 B .
\ £ mod ps—1) D=0+ 1 (300 124 65 97 189\ =E mod 1031
tion: How do we pair up the exponents mod p-1? Sort_ | 080394960 377009 = mod 10-97
Question: pait tip b b~ The moduli we choose share a common divisor 6. That is, for  (modd) * 20 34 115 57 39 — FE mod 10 - 13
We recover the exponents from their images mod p — 1, and there- all 1 <7 < s,p; = dz; + 1. If we make o large enough then the \ 100 254 35 217 119 / = mod 10 - 33
fore first need .to .pair the images into sets that corréspond to the right birthday paradox tells us Now apply the Generalized Chinese remainder theorem.
exponents. This 1s a challenge because their order 1s unknown. 5 > 2 b{ }
> t* = Probyunique exponentst > .0.
/E mod pl—l\ (611 €19 613...6115\ i/ \l/ \‘ \ \
E mod py— 1 ? 001 oo e 0 . o 4126090 10826564 1918655 264217 7269689
e 2 B If the exponents are unique mod ¢ then their images mod dx
\ B mod ps— 1 \ €1 €52 €53 .. st ) are unique mod ¢, and therefore we can sort them mod 6. E ={264217, 1918655, 4126090, 7269689, 10826564 }
Coal g(X) — CL1£C264217 i CLQCC1918655 1 CL3$‘4126090 1 CL4QZ‘7269689 i &55610826564
In—te>r olate £ i 6\1/ ei t /E mod py = 1\ /611 “12 €13 - - elt\
P b2 = e M E  mod Py — 1 Sort mod 0 . €91 €99 €93 ... €y
\E mod p3—1) \651 €52 653...€3t)
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Smooth Primes

In step 4 of procedure InterpolateExponents we solve a discrete logarithm.

Question: How do we solve the discrete logarithm efficiently?

If p = p{ 1p§2 L p‘/’;’“ + 1, then the cost of running the Pohlig-Hellman al-

gorithm is O(Y>%_, fi(log p + +/pi)) [1]. Therefore to maintain an efficient
algorithm we need that p 1s smooth.

Our application uses 63 bit primes. We need that there are enough smooth
primes less than 205,

Definition An integer x is y-smooth if for every prime p|x we have p < .
The number of y-smooth primes 1s

m(x,y) = Z 1.

primes p<x such that p—1 is y—smooth

Example We computed 7(2°0, 1024) = 4816780.

Theorem (Friedlander J.B., 1989 [3]). If & > +/e/2 = 0.303... and
y > % then there exists ¢ > 0 such that

x
log x

m(x,y) > ¢

We know by the prime number theorem that 7(z) ~ @. Therefore, the
above theorem tells us that, for every a > .303, we can find a constant such
that m(x,y) > cm(x). We computed a few of these constants which are

listed 1n the following table.

a = 0.5 a=0.33 a = 0.25

Yy xr C X C X C

2101932 () 33746 2% 0.05600 | 2°* 0.00591
2181930 ().3327212°% 0.05578 274 0.00558
2201940 (330812 0.05418 2%V 0.00568
2221944 ().32957 250 0.05355 | 2°° (0.00594
2241948 ().32604 |27 0.05307  2°% 0.00563
2201992 () 32665 2° 0.05297 | 219% 0.00545
2261990 ().32400|2%* 0.05171 2112 0.00568
2301900 (9.31983 2V 0.05195 214V 0.00529
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