
Smooth Primes
In step 4 of procedure InterpolateExponents we solve a discrete logarithm.

Question: How do we solve the discrete logarithm efficiently?

If p = p
f1
1 p

f2
2 . . . p

fk
k + 1, then the cost of running the Pohlig-Hellman al-

gorithm is O(
∑k
n=1 fi(log p +

√
pi)) [1]. Therefore to maintain an efficient

algorithm we need that p is smooth.

Our application uses 63 bit primes. We need that there are enough smooth
primes less than 263.

Definition An integer x is y-smooth if for every prime p|x we have p ≤ y.
The number of y-smooth primes is

π(x, y) =
∑

primes p≤x such that p−1 is y−smooth

1.

Example We computed π(230, 1024) = 4816780.

Theorem (Friedlander J.B., 1989 [3]). If α >
√
e/2 = 0.303... and

y > xα then there exists c > 0 such that

π(x, y) > c x
log x

We know by the prime number theorem that π(x) ∼ x
log x. Therefore, the

above theorem tells us that, for every α > .303, we can find a constant such
that π(x, y) > cπ(x). We computed a few of these constants which are
listed in the following table.

α = 0.5 α = 0.33 α = 0.25
y x c x c x c

216 232 0.33746 248 0.05600 264 0.00591

218 236 0.33272 254 0.05578 272 0.00558

220 240 0.33081 260 0.05418 280 0.00568

222 244 0.32957 266 0.05355 288 0.00594

224 248 0.32604 272 0.05307 296 0.00563

226 252 0.32665 278 0.05297 2104 0.00545

228 256 0.32400 284 0.05171 2112 0.00568

230 260 0.31983 290 0.05195 2120 0.00529
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Recovering the Exponents
Once we have sorted the images, we can apply a generalized
form of the Chinese remainder theorem to recover the expo-
nents.

Generalized Chinese Remainder Theorem Let m1, ...,ms

be positive integers. Let M = LCM(m1, ...,ms), and let
u1, ..., us be any integers. There exists exactly one integer u
such that,
i) u ≡ ui(mod mi), 1 ≤ i ≤ s, and
ii) 0 ≤ u ≤M,

iff ui ≡ uj (mod gcd(mi,mj)), 1 ≤ i < j ≤ s. [2]

The theorem bellow encapsulates that if the exponents are unique
mod δ, then their modular images are unique mod δ and pair
up into sets from which we can recover the exponents.

Theorem Let m1 = δx1,m2 = δx2, ...,ms = δxs, and
M = LCM(m1, ...,ms). Let E be a set of t non negative
integers. Let E1, ..., Es be sets such that, Ek = {x mod mk :
x ∈ E}, 1 ≤ k ≤ s. If E contains distinct elements modulo
δ, then there exists exactly t integers, u1, u2, ..., ut such that
(i) 0 ≤ ui < M ,
(ii) for each ui, there exist exactly s integers u1i, u2i, ..., usi
such that u1i ∈ E1, u2i ∈ E2, ..., usi ∈ Es, and ui ≡ uki(mod
mk), 1 ≤ ∀k ≤ s.

Example:

E1 = {65, 97, 124, 189, 300} p1 = 10 · 31 + 1
E2 = {377, 394, 509, 680, 965} p2 = 10 · 97 + 1
E3 = {20, 34, 57, 89, 115} p3 = 10 · 13 + 1
E4 = {35, 100, 119, 217, 254} p4 = 10 · 33 + 1

Notice E1mod δ gives E1 = {65, 97, 124, 189, 300}mod 10
= {5, 7, 4, 9, 0}, and therefore the exponents are unique mod
δ = 10. Now the images can be sorted mod δ.

Sort
(mod δ) →


300 124 65 97 189
680 394 965 377 509
20 34 115 57 89
100 254 35 217 119


= E mod 10 · 31
= E mod 10 · 97
= E mod 10 · 13
= E mod 10 · 33

Now apply the Generalized Chinese remainder theorem.

↓ ↓ ↘ ↘ ↘
4126090 10826564 1918655 264217 7269689

E = {264217, 1918655, 4126090, 7269689, 10826564}
g(x) = a1x264217+ a2x1918655+ a3x4126090+ a4x7269689+ a5x10826564

Question: How do we recover the exponents?

How do we recover the exponents ei from their images mod-
ulo pi − 1? We recover the exponents by applying a general-
ized form of Chinese remaindering which does not require rel-
atively prime moduli.

Method
Our method requires that we use smooth primes.

Definition A prime p is y-smooth if for every prime q|p− 1 we
have q ≤ y.

We pick s smooth primes of the form p = 2kr + 1, so that
LCM(p1 − 1, p2 − 1, ..., ps − 1) > d.

For each prime we interpolate a set E mod p − 1 by running
the following procedure. See [4]

Procedure Interpolate Exponents mod p-1:
INPUT: Black Box polynomial g and a prime p.
OUTPUT: E mod p− 1.
(1) Pick a generator α ∈ Zp.

For 1 ≤ j ≤ 2t− 1 compute vj = g(αj).

(2) Compute λ(z) =
∏t

i=1(z − αei mod p−1) from the evalua-
tions vj with the Berlekamp Massey algorithm.
(3) Compute the roots of λ(z) : αe1, αe2, ..., αet(mod p).
(4) Solve mod p-1 by taking the discrete logarithm:
logα(α

ei)mod p = eimod p− 1. [1]

(Exponents mod p− 1)→


E mod p1 − 1
E mod p2 − 1

...
E mod ps − 1


Sorting the Exponents mod p-1

p = δx + 1

The moduli we choose share a common divisor δ. That is, for
all 1 ≤ i ≤ s, pi = δxi + 1. If we make δ large enough then the
birthday paradox tells us

δ > t2⇒ Prob{unique exponents} > .6.

If the exponents are unique mod δ then their images mod δx
are unique mod δ, and therefore we can sort them mod δ.

E mod p1 − 1
E mod p2 − 1

...
E mod ps − 1

 Sort mod δ
−−−−−−−−→


e11 e12 e13 . . . e1t
e21 e22 e23 . . . e2t
... ... ... . . . ...
es1 es2 es3 . . . est



Introduction
Polynomial interpolation is the problem of fitting a polynomial to a
set of data. We represent this process with the Black Box model of
polynomial interpolation.

The Black Box Model

Let f ∈ Z[x1, x2, ..., xn]. The goal is to interpolate f from a set of
evaluations.

(γ1,γ2,...,γn)∈Zn
−−−−−−−−−−→

f (γ1,γ2,...,γn)∈Z
−−−−−−−−−−→

The interpolation method presented in this poster is a sparse interpo-
lation method.

Definition Let f ∈ R[x1, x2, ..., xn], where R is a ring and deg f = d.
Let t denote the number of non-zero terms of f and Tmax denote the
maximum possible terms of f . f is sparse if t� Tmax =

(n+d
d

)
.

We interpolate f modulo a set of primes p1, p2, ..., ps and use Chi-
nese remaindering to recover the integer coefficients. We use a
Kronecker substitution to reduce multivariate interpolation to a uni-
variate interpolation.

Definition Let D be an integral domain. Let f ∈ D[x1, x2, ..., xn], f 6=
0. Let r = [r1, r2, ..., rn−1] ∈ Zn−1, ri > 0. Let Kr : D[x1, x2, ..., xn]→
D[x] be the Kronecker substitution Kr(f ) = f (x, xr1, xr1r2, ..., xr1r2...rn−1).
Let di = degxif be the partial degrees of f, 1 ≤ i ≤ n. Kr is invert-
ible if ri > di, 1 ≤ i ≤ n− 1.

Example Let f (x, y, z) = 2x4y3z2 + 3x2yz + 7x2z3 + 5. Kr(f ) =
f (x, x5, x5·4) = 2x59 + 3x27 + 7x62 + 5x0.

After applying the Kronecker substitution the degree of the polyno-
mial becomes exponential in n. In this poster we present a modular
algorithm for recovering the exponents.

Problem
Let f ∈ Z[x1..., xn], with Kr(f ) = g(x) = a1x

e1+a2x
e2+ . . .+atx

et,
and deg g = d. let E = {e1, e2, ..., et}. Our goal is to interpolate E.

We first interpolate the exponents modulo a set of primes minus 1.

→


E mod p1 − 1
E mod p2 − 1

...
E mod ps − 1

 The order is unknown.

Question: How do we pair up the exponents mod p-1?

We recover the exponents from their images mod p − 1, and there-
fore first need to pair the images into sets that correspond to the right
exponents. This is a challenge because their order is unknown.

E mod p1 − 1
E mod p2 − 1

...
E mod ps − 1

 ?
−−−−−−−−−−→


e11 e12 e13 . . . e1t
e21 e22 e23 . . . e2t
... ... ... . . . ...
es1 es2 es3 . . . est


Goal−→ ↓ ↓ ↓ ↓
Interpolate E e1 e2 e3 . . . et

Mathematical Operations
Common manipulations (simplify,
factor, expand,…) Right-click expression and select from menu

Solve equations Right-click equation Solve

Solve numerically (floating-point) Right-click equation Numerically Solve 

Solve ODE Right-click DE expression Solve DE Interactively

Integrate, differentiate Right-click expression Integrate or Differentiate

Evaluate expression at a point Right-click expression Evaluate at a Point

Create a matrix or vector Matrix palette Choose Insert

Invert, transpose, solve matrix
Right-click matrix Standard Operations select
Inverse, Transpose, ...

Evaluate as floating-point Right-click expression Approximate

Various operations and tasks Use Task Templates: Tools Tasks Browse

Expressions vs. Functions
Operations Expression x2+y2 Function (operator) g(x,y) = x2+y2

Definition !"#$"%&'"(")&'* +"#$",%-)."/0""%&'()&'*

Evaluate at x=1, y=2 1234,!-"5%$6-)$'7.*"produces 5 +,6-'.*"produces 5

3-D plot for x from 0 to 1, y from 0 to 1 849:;<,!-%$=>>6-)$=>>6.* 849:;<,+,%-).-%$=>>6-)$=>>6.*

Conversion to other form
!'"#$"?@3884),!-%-).*

!',6-'.*

produces 5

+'"#$"+,%-6.*""

+'"("A*

produces x2+1+z

Units and Tolerances

Add units to value or expression
Place cursor to right of quantity. Use Units (SI) or 
Units (FPS) palette or right-click Units Affix unit.

Add arbitrary unit from Units (SI) or Units (FPS) palette and
enter desired unit

Simplify units in an expression Right-click expression Units Simplify

Convert units Right-click expression Units Convert

Enable automatic units simplification BC:D,E@C:F5G:3@<3H<7.*

Enable tolerance calculations BC:D,I941H3@J1F.*

Tolerance quantity in 2-D Math !"#$ %&% for 9 ± 1.1

Tolerance quantity in 1-D Math K"L(/"6>6* for 9 ± 1.1

Input and Output
Interactive data import assistant Tools Assistants Import Data

Import audio or image file Tools Assistants Import Data

Code generation (C, FORTRAN,
Java, Visual Basic®, MATLAB®)

Right-click expression Language Conversions. 
See ?CodeGeneration for help and details.

Publish document in HTML, PDF,
LaTeX, or Microsoft® Word-RTF

File Export As select HTML, PDF, LaTeX, 
or Rich Text Format

Select Interactive Tools and Utilities
Quick introductory tour Help Take a Tour of Maple

Show available task templates Tools Tasks Browse

Plot Builder
Right-click expression Plots Plot Builder, 
or Tools Assistants Plot Builder

ODE Analyzer Tools Assistants ODE Analyzer

Data Analysis Assistant Tools Assistants Data Analysis

Unit Conversion utility Tools Assistants Units Calculator

Back-Solving Assistant Tools Assistants BackSolver

Apply numeric formatting Right-click expression Numeric Formatting

Maple Portal Help      Manuals, Resources and more 
Maple Portal

Manuals Help Manuals, Resources, and more Manuals

Graphing Calculator Interface Installs as separate program. Launch from Start
Maple Maple Calculator

Interactive education tutors for 
topics in Calculus, Precalculus, 
and Linear Algebra

Tools Tutors
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Important Maple Syntax
#$ Assignment 3#$'*"M#$;(%*"J#$3(M* produces 5 + x for J

$ Mathematical equation F9421,'N%"("3"$"6-%.* produces x =
1-a
—
2

$ Boolean equality C!"3"$"="":D1@"O

Suppress display of output Terminate command with a colon, e.g. 6===P"#

[ ]  List (ordered) A#$5J-"M-"37*"A567* produces c

{ } Set (unordered, no duplicates) Q3-"M-"3-"JR* produces {a,b,c }

Display help on topic S:98CJ
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Plotting and Animation
Plot an existing expression - click expression Plots Plot Builder

Plot new expression Tools Assistants Plot Builder

Add new expression to existing plot Highlight and drag expression into plot

Add annotations to plots Click on plot, then on the toolbar

Animation and parameter plots for 
functions of several variables

Right-click expression Plots Plot Builder
and select a plot type
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