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Abstract

Solving linear systems of equations over cyclotomic fields by
directly applying Gauss Elimination is inefficient. We con-
sider two approaches, namely, Chinese remainderingpand
adic lifting. Both of the approaches use rational reconstruc-
tion to recover the rational coefficients in solution vectors.

Notations

e : a primitivem!” root of unity

A : ann by n matrix overQ|e]

B : a vector ofn elements ove@|e]

X : the solution vector which satisfies. X = B (mod M).
M : minimal polynomial fore of degreel

Chinese Remaindering with Rational Reconstruc-
tion

Gauss Elimination

A.X = B (mod M) > X €Qle]/M
A
choose primes C'RT
p11p21'"1pt &
s.t. M splits into linear rational
factors (mod p)) reconstruction
v
A . X, = B, (mod p,) X € Zpi[e]/M
A

substitute e = r,, ry, ...
into A and B

T interpolate e

v
B solve over Z
A X, . =B, (modp, 2 > X .

. c/Z
LT 2% ) — ) L] p;
using Gauss Elimination

Input: Matrix A, VectorB, PolynomialM
Output: VectorX which satisfieA. X = B (mod M)

1.Clear fractions in Matrix4A and VectorB
2.Generate suitable primes, po, ..., p;
3.for;=1totdo

(a)find all rootsry, . .
(b)for j =1tod do
. substituter; into A and B
il. solve linear system; ;..X; ; = B; ; modp, for X ,
(c)Interpolatee from pointsr;’s and.X; ;'s
4.Apply Chinese Remainder Theorem to recaXemodp; X ps X - - - X p;
5.Apply Rational Reconstruction algorithm to recovéroverQ|e| /M

., rq Of M modp;

Strength and Weakness

e \We choose primeg, p-, ..., p; to be half size of machine primes so that
multiplication inZ,, is done In the hardware.

e The primes which can factao¥/ into linear factors appear approxi-
mately one in everyl primes.

e Since we do not know In advance how many primes is sufficient to re-
cover the solution coefficients, we need to check the solution iteratively
to see If we get the correct answer. We check the solution quadratically
Instead of linearly in the implementation to avoid doing too many un-
successful rational reconstructions.

»
Maplesoft

@
-
G
S the

command brilliance

Computational Algebra Group

Centre for Experimental and Constructive Mathematics

Department of Mathematics
Simon Fraser University

p-adic Lifting with Rational Reconstruction

Input: Matrix A, VectorB, PolynomialM
Output: VectorX which satisfiesA. X = B (mod M)

1.Clear fractions in MatrixA and VectorB
2.Find one suitable primg

3.Find all rootsr, . .
4,.Setk =1, errory = B

., rq Of M modp

(a)Loop until £ reaches a certain bound
I.for s :=1toddo
A. substituter; into A anderror;._;
B.solve linear system;. X,_, ; = errory_;; overz,

IIl. Interpolatee to obtainX;_; fromr;’s and X_; ;'s
lll. Updateerror, and sek .=k + 1

5.0btain X® = Xy + Xy xp+ Xo x p2 + -+ 4+ X x pF~!
6.Apply rational reconstruction to recovér overQ|e| /M

Strength and Weakness

Linear p-adic lifting : Same as the Chinese Remaindering approach, we require the prime to be
half of the size of machine primes so that we can utilize the Modular package in Maple. By using
p-adic lifting, we need only one such prime which splitsinto linear factors ove¥.,. Since we

do not know when to stop the lifting process, we need to check the solution periodically until
either it returns the correct solution or "FAIL” if it reaches a bound. In this approach, we need
to compute the error term which consumes the most of time.

Quadratic p-adic lifting : It is easy to lift the roots ofl/ overZ, to roots oveiZ,... However,

we can not use the Modular package since the calculation is dafg. iin each iteration of
guadratic lifting, it doubles the length of recovering coefficients which reduces time on comput-
Ing the error term. The most time consuming part in this approach is to solve the linear systems
overZ, In each iteration.

Experiment

letM =V ettt edre?2ter1

Let the entries ilA and B be random polynomials ii|e| /M

Use Gauss Elimination:

matrix Coefficient Length
dimensions2 digits| 4 digits 8 digits| 16 digits 32 digits
5 039  .054 | .094 174 401
10 420 | 713 | 1.395| 3.33 | 9.445
20 6.517 13.63 35.04 106.2  362.6
40 171.4 | 460.3| 1453 - -
80 - - - -
Use CRT& RR:
matrix Coefficient Length
dimensions2 digits| 4 digits 8 digits| 16 digits 32 digits
5 026 @ .062 | .101 182 506
10 068 | .145 | 325 | .697 | 2.208
20 310 | 596 | 1.25 | 3.104  12.629
40 1.961| 3.692 | 7.687 | 18.676| 93.053
80 15.1 1 29.142 58.452 147.744 815.724
Use Linear-adic Lifting & RR:
matrix Coefficient Length
dimensions2 digits| 4 digits 8 digits| 16 digits 32 digits
5 052 070 | .170 | .425 | 1.086
10 154 | 271 | 522 | 1.312 | 3.892
20 538 | 974 | 1.854| 4954 | 14.814
40 2.391 | 3.725| 7.626 | 20.347| 70.763
80 11.317 19.20 38.92| 102.56 | 408.60

Data Analysis

Observing the trend of data, we learn that
the CRT approach has advantage in com-
puting small systems with large coeffi-
cients, and lineap-adic lifting approach
has advantage in solving large systems
with small coefficients. For example, let
A be a3 x 3 matrix, the coefficients be
10,000 decimal digits long, and/ be a
cyclotomic polynomial of degree. It
takes a modified CRT prograi?8 sec-
onds to finish and a modified linear lift-
INng programi’41 seconds to finish. How-
ever, the quadratig-adic lifting program
can do almost as good as the CRT one by
taking 139 seconds to complete.




