default

Univariate Polynomial Factorization indMaple via Combinatorial Trial Division

Alejandro Erickson, Michael Monagan, Ha Le
Department of Mathematics, Simon Fraser University

Abstract

We present a Maple implementation (‘factorrpoly’) for factoring polynomials in
Z|x]. For example, on input of 3z° — 8x* — 1227 + 142* + 25x + 14, the algorithm
outputs the factorization (3x* — 2z — 7)(z° — 22° — 3z — 2).

The implementation uses “recden”, a recursive dense polynomial representation.
We first apply the Cantor Zassenhaus distinct degree factorization algorithm to
factor the polynomial modulo a prime p then we lift the factors using a quadratic
parallel Hensel lift with trial division of combinations of 1 and 2 modular factors
at each step. The algorithm finishes with a combinatorial algorithm, checking the
necessary combinations of lifted factors to find real factors.

Example
Input

f1 = 5517 + 620z + 6149x> + 145827 + 69444*

fy = 4583 + 9893x + 97992 + 528z> + 9000x* + 206°

fs 1= 2412 + 9747z + 97332 + 6082 + 6072* + 18042° + 99932°
f1 = 903950282169 — 4996375028z 4+ 9509358x* — 67562 + 2°
Input expanded product: f = fif2f3f4

Pseudotrace and Timing of factorrpoly(f)

Modular factorization: modulus number of factors time (seconds)
Total time for this part| 13 10 0.265
1s 0.662 sec. Choose 19 9 0.147
mod 19 because 23 9 0.129
1t has less factors. 29 11 0.121

Enter parallel Hensel lift with 9 images mod19.
Bound = 344039329641892270887182690327140503650304 ~ 19
Find sequence of lifting steps to prevent overshooting bound.
lift solution from Zig|x| to Z;¢|x]
from 19% to 19 time = 0.287, trial divide in Z[x], mod by 19
from 19° to 19% time = (.219, trial divide, mod by 19°
from 19° to 19" time = 0.318, trial divide, mod by 19"
from 19” to 19'® time = 0.254, trial divide
found factor in Z[z|: 4583 + 9893z + 9799z + 528x° + 9000z* + 2062°
found factor in Z[x]: 5517 + 6202 + 61492 + 14582 + 6944z
mod by 19'7
lift from 19! to 19%* time = 0.270, no trial division.
Time for parallel Hensel lift: 1.424
Good factors (in Z|x]): 2, Bad factors (Zjgx= | only): 7
Multiply bad factors mod 19°* and trail divide in Z[z| to find good factors.
Try all combinations of bad factors starting with groups of size 1.
Combined 3 found factor: 2412+9747x+97332°+608x°+6072* +18042°+99932"
Combined remaining 4 (is a factor): 903950282169 — 4996375028224 9509358z —
6756a° + 2°
Time for Combinations: 0.083
Total time for ‘factorrpoly’: 2.169
Time for Maple’s ‘factor’ : 0.161

The Technical Bit
The Parallel Quadratic Hensel Lift

The basic Hensel lift takes A € Z|z] > ged(A (mod p), A" (mod p)) = 1, for
a prime, p, and ug, wy € Zy|x| such that A — upwy =0 (mod p). At the kth step
of the lift, A — u®w™ = 0 (mod p*) where u¥) = wg + wip + uop® + -+ - +
up_1p"" ! (mod p*). By Hensel’s lemma, the updates u;, and wy, are given by the
solution to,

k)

A — Bk
(—— (mod p)

-) = wku(k) T ukw(
p
7|z

In ‘factorrpoly’ a parallel, quadratic variation 1s used so that there are less steps
and we avoid redundant lifting. Now,

2

(mod p*)

u® = uy + urp + wop® + ugp® + -+ wp1p”

ion: Lift via a nearly quadratic sequence of prime powers (see example).
Consider the positive sequence given by By, = [v/By|, By = B. Our prime
powers are given by the minimum e; such that p“ > B;. Mod our p-adic im-
ages at the kth step by p°. In practice, this 1s usually p
lift, at most, to pb5.

2¢t-1=1 or p?1 and we

p cZ|x]

alkaék) ‘e ag? -+ a&magkaék) e ag\]?) + -+ agm ‘e a%lla]\zk (mod pek)

which prevents us from using the euclidean algorithm because the non prime
modulus introduces zero divisors.
Soluti ' '

e solve

= 1 and lift solutions, 5", ") to Z ,.[x] at each step. Using s\ =

k=1) 4 ka_Zsk_l (likewise for ¢, u, w) we expand (1) to arrive at
p

sl

1 — (S(k—l)u(k—l) 4 t(k—l)w(k:—l)) _ pzk—Q(S(k—l)uk_l 4 t(k_l)wk_l) _

k—2

P (sk_lu(k_1> + tk_1w<k_1>) (mod pQH)

2k—2

Divide both sides by p© and set d < RHS. Now let s « ds" 1t —
dt*~' then constrain the degrees of these such that deg(s;_1) < deg(u*~Y) to
update s®). We find w;._; and u;_; in the same fashion.

Fast Trial Division

Since we are lifting modular 1images they often do not correspond to factors in
Z|x|. We find the “real” factors by trial dividing combinations of images over the
integers. If we do this fast enough it 1s worthwhile to trial divide combinations
of 1 and 2 1mages part way up the lift. Two different trial divisions are used in
‘factorrpoly’ to avoid unnecessary rational reconstruction. The algorithm used 1n
the Hensel lift 1s as follows:

procedure TrialDivision(A,L,p,B, Q’,"M”’)
A is a polynomial in Z|x|
L is a list of monic images mod p”
p 1s a prime, B 1s a bound on the coefficients of the factors of A
N — |L|
if Icoeff(a) = 1 then m « II)Y, tcoeff(L;) (mod p*)
if m ftcoeff(a) then return false
m «— IIL,q < aprime > g # p
if Icoeff(a) # 1 then m <« integer ratrecon(m)
if 'n =FAIL then return false
else m <« integer primitive part(m)
if ||m||. > B then return false
if Icoeff(m) [lcoeff(a) then return false
if m fa (mod ¢) then return false
if m|a then () < quotient, M < m, return true end

‘factorrpoly’

In brief the rest of the algorithm 1s as follows:

1. Input A € Z|x|

2. Remove integer content

3. Find square free factorizations mod |log (deg A) | primes

4. Pick “best” prime (see example)

5. Lift monic modular images, trial dividing at each step, use rational reconstruc-
tion 1f necessary

6. Trial divide combinations of the remaining “bad* factors until all factors in
Z)|x] have been found

7. Return factors in Z|x| from each square free factor and content from step 2

Results and Timing

For a polynomial f with 2 equal size factors the algorithm is O(d*M(L)). L =
O(logys: || f||so), M is maple’s integer multiplication and d = deg(f).
‘factorrpoly’ is significantly faster than ‘factor’ in Maple 9.5 for random monic
inputs with very long coefficients. For 3 factors with degree 30:

factorrpoly= 5.281 sec, factor= 12.710, sec, Coeff length = 3138 digits
factorrpoly= 14.460 sec, factor= 75.840, sec, Coeffs length = 6209 digits
‘factorrpoly’ 1s comparable to the factorization in Maple V, the last version which
uses a similar algorithm.

Future Work and Recden

Recden 1s the underlying data structure used by ‘factorrpoly’ and polynomials
are stored as follows:

POLYNOMIAL ([<ch
extension>],

ic>, [x1,x2], [<finite field
x2>], [<list rep 1in x2>],

<polys in x 1>17)

This dense repre
ate polynomials
under developme
the aging modp1 an
Parts of ‘factorrpoly’ wi
knapsack factorization.

d) facilitates operations on multivari-
and rings. The package 1s currently
Il be implemented 1n C so as to replace

a Le’s implementation of Mark van Hoelj’s

References
K.O. Geddes, S.R. Czapor, G. Labahn.
Algorithms for Computer Algebra. Kluwer Academic Publishers, Boston, 1992.

