
default

procedure TrialDivision(A,L,p,B,‘Q’,‘M’)
# A is a polynomial in Z[x]
# L is a list of monic images mod pk

# p is a prime, B is a bound on the coefficients of the factors of A
N ← |L|
if lcoeff(a) = 1 then m← ΠN

i=1 tcoeff(Li) (mod pk)
if m 6 |tcoeff(a) then return false

m← ΠL, q ← a prime 3 q 6= p
if lcoeff(a) 6= 1 then m← integer ratrecon(m)

if m =FAIL then return false
else m← integer primitive part(m)

if ‖m‖∞ > B then return false
if lcoeff(m) 6 | lcoeff(a) then return false
if m 6 |a (mod q) then return false
if m|a then Q← quotient, M ← m, return true end

‘factorrpoly’
In brief the rest of the algorithm is as follows:
1. Input A ∈ Z[x]
2. Remove integer content
3. Find square free factorizations mod blog (deg A)c primes
4. Pick “best” prime (see example)
5. Lift monic modular images, trial dividing at each step, use rational reconstruc-
tion if necessary
6. Trial divide combinations of the remaining “bad“ factors until all factors in
Z[x] have been found
7. Return factors in Z[x] from each square free factor and content from step 2

Results and Timing
For a polynomial f with 2 equal size factors the algorithm is O(d2M(L)). L =
O(log232 ‖f‖∞), M is maple’s integer multiplication and d = deg(f ).
‘factorrpoly’ is significantly faster than ‘factor’ in Maple 9.5 for random monic
inputs with very long coefficients. For 3 factors with degree 30:
factorrpoly= 5.281 sec, factor= 12.710, sec, Coeff length = 3138 digits
factorrpoly= 14.460 sec, factor= 75.840, sec, Coeffs length = 6209 digits
‘factorrpoly’ is comparable to the factorization in Maple V, the last version which
uses a similar algorithm.

Future Work and Recden
Recden is the underlying data structure used by ‘factorrpoly’ and polynomials
are stored as follows:

POLYNOMIAL([<characterstic>,[x1,x2],[<finite field
extension>],[[<list rep in x2>],[<list rep in x2>],
<polys in x2 are coeffs of x1>])

This dense representation (ie zeros are stored) facilitates operations on multivari-
ate polynomials in finite and infinite fields and rings. The package is currently
under development and in the future will be implemented in C so as to replace
the aging modp1 and modp2 packages.
Parts of ‘factorrpoly’ will be used in Ha Le’s implementation of Mark van Hoeij’s
knapsack factorization.

References
K.O. Geddes, S.R. Czapor, G. Labahn.
Algorithms for Computer Algebra. Kluwer Academic Publishers, Boston, 1992.

The Technical Bit
The Parallel Quadratic Hensel Lift

The basic Hensel lift takes A ∈ Z[x] 3 gcd(A (mod p), A′ (mod p)) = 1, for
a prime, p, and u0, w0 ∈ Zp[x] such that A− u0w0 = 0 (mod p). At the kth step
of the lift, A − u(k)w(k) = 0 (mod pk) where u(k) = u0 + u1p + u2p

2 + · · · +
uk−1p

k−1 (mod pk). By Hensel’s lemma, the updates uk and wk are given by the
solution to, (

A− u(k)w(k)

pk

)
∈Z[x]

= wku
(k) + ukw

(k) (mod p)

In ‘factorrpoly’ a parallel, quadratic variation is used so that there are less steps
and we avoid redundant lifting. Now,

u(k) = u0 + u1p + u2p
2 + u3p

22

+ · · · + uk−1p
2k−2

(mod p2k−1

)

Problems

1. We may potentially to lift the coefficients almost to the bound squared.
Solution: Lift via a nearly quadratic sequence of prime powers (see example).
Consider the positive sequence given by Bk+1 = d

√
Bke, B0 = B. Our prime

powers are given by the minimum ek such that pek ≥ Bk. Mod our p-adic im-
ages at the kth step by pek. In practice, this is usually p2ek−1−1 or p2ek−1 and we
lift, at most, to pB.

2. For N images the diophantine equation becomes,(
A− a

(k)
1 a

(k)
2 · · · a

(k)
N

pek

)
∈Z[x]

=

a1ka
(k)
2 · · · a

(k)
N + a

(k)
1 a2ka

(k)
3 · · · a

(k)
N + · · · + a

(k)
1 · · · a

(k)
N−1aNk (mod pek)

which prevents us from using the euclidean algorithm because the non prime
modulus introduces zero divisors.
Solution: For two factors, ignoring problem one we solve

1 = s(k)u(k) + t(k)w(k) (mod p2k−1

) (1)

for k = 1 and lift solutions, s(k), t(k) to Zp2k−1[x] at each step. Using s(k) =

s(k−1) + p2k−2

sk−1 (likewise for t, u, w) we expand (1) to arrive at

1− (s(k−1)u(k−1) + t(k−1)w(k−1))− p2k−2

(s(k−1)uk−1 + t(k−1)wk−1) =

p2k−2

(sk−1u
(k−1) + tk−1w

(k−1)) (mod p2k−1

)

Divide both sides by p2k−2

and set d ← RHS. Now let sk−1 ← dsk−1, tk−1 ←
dtk−1 then constrain the degrees of these such that deg(sk−1) ≤ deg(u(k−1)) to
update s(k). We find wk−1 and uk−1 in the same fashion.

Fast Trial Division

Since we are lifting modular images they often do not correspond to factors in
Z[x]. We find the “real” factors by trial dividing combinations of images over the
integers. If we do this fast enough it is worthwhile to trial divide combinations
of 1 and 2 images part way up the lift. Two different trial divisions are used in
‘factorrpoly’ to avoid unnecessary rational reconstruction. The algorithm used in
the Hensel lift is as follows:

Abstract

We present a Maple implementation (‘factorrpoly’) for factoring polynomials in
Z[x]. For example, on input of 3x5− 8x4− 12x3 + 14x2 + 25x+ 14, the algorithm
outputs the factorization (3x2 − 2x− 7)(x3 − 2x2 − 3x− 2).
The implementation uses “recden”, a recursive dense polynomial representation.
We first apply the Cantor Zassenhaus distinct degree factorization algorithm to
factor the polynomial modulo a prime p then we lift the factors using a quadratic
parallel Hensel lift with trial division of combinations of 1 and 2 modular factors
at each step. The algorithm finishes with a combinatorial algorithm, checking the
necessary combinations of lifted factors to find real factors.

Example
Input

f1 := 5517 + 620x + 6149x2 + 1458x3 + 6944x4

f2 := 4583 + 9893x + 9799x2 + 528x3 + 9000x4 + 206x5

f3 := 2412 + 9747x + 9733x2 + 608x3 + 607x4 + 1804x5 + 9993x6

f4 := 903950282169− 4996375028x2 + 9509358x4 − 6756x6 + x8

Input expanded product: f := f1f2f3f4

Pseudotrace and Timing of factorrpoly(f )

Modular factorization: modulus number of factors time (seconds)
Total time for this part 13 10 0.265
is 0.662 sec. Choose 19 9 0.147
mod 19 because 23 9 0.129
it has less factors. 29 11 0.121

Enter parallel Hensel lift with 9 images mod19.
Bound = 344039329641892270887182690327140503650304 ' 1932

Find sequence of lifting steps to prevent overshooting bound.
lift solution from Z19[x] to Z192[x]

from 192 to 194 time = 0.287, trial divide in Z[x], mod by 193

from 193 to 196 time = 0.219, trial divide, mod by 195

from 195 to 1910 time = 0.318, trial divide, mod by 199

from 199 to 1918 time = 0.254, trial divide
found factor in Z[x]: 4583 + 9893x + 9799x2 + 528x3 + 9000x4 + 206x5

found factor in Z[x]: 5517 + 620x + 6149x2 + 1458x3 + 6944x4

mod by 1917

lift from 1917 to 1934 time = 0.270, no trial division.
Time for parallel Hensel lift: 1.424
Good factors (in Z[x]): 2, Bad factors (Z1934[x] only): 7
Multiply bad factors mod 1934 and trail divide in Z[x] to find good factors.
Try all combinations of bad factors starting with groups of size 1.
Combined 3 found factor: 2412+9747x+9733x2+608x3+607x4+1804x5+9993x6

Combined remaining 4 (is a factor): 903950282169−4996375028x2+9509358x4−
6756x6 + x8

Time for Combinations: 0.083
Total time for ‘factorrpoly’: 2.169
Time for Maple’s ‘factor’ : 0.161

Alejandro Erickson, Michael Monagan, Ha Le
Department of Mathematics, Simon Fraser University

Univariate Polynomial Factorization in Maple via Combinatorial Trial Division


