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The Problem

The problem of factoring multivariate polynomials over a field 1s one of the most challenging
problems in computer algebra. We are specially interested in factorization over algebraic number
and function fields.

An algebraic number is a root of a univariate polynomial with integer coefficients.

E.g. « = /2is an algebraic number which is a root of mq(z) = 2> — 2.

An algebraic function is a root of a univariate polynomial in Z(t{, to, . . ., t3.)[2].

E.g. o= +/t] + v/2is an algebraic function which is a root of mg(z) = 2* — (2t1)2% + t% — 2.

If mq(2) is monic and irreducible, it is called the minimal polynomial for .

Given algebraic functions o, . . ., oy In parameters t1, ..., ;. we want to compute over the alge-
braic function field L = Q(¢1,...,t;)(a, ..., «,). In this poster we want to factor a polynomial
f € L|xy,. ..,z into irreducible factors to obtain f = x f1 X fox---x f, wherel =Icz, .+ (f)

is the leading coefficient of f and each f; is a monic irreducible polynomial.
Example 1. For o« = /1 — t2, the algebraic function field is L = Q(t)(v/1 — t2). Factoring
f=a°—ax?y+ 2 +30zx4y —3xy? 4+ 3ay’t? + 3azy — 23+ ay — 1 over L results in

3

F=(2>43azy —1) x (27 —ay+1).

Trager’s Algorithm

One way to factor f € L|xq,...,x,|is to use Trager’s algorithm:

f € Llxy, ..., x, f i X foxo X fy

\4

h = norm(f) S Q(tla s 7t/€)[x17 s 7371}] fZ — ng(fa hZ) S L[xla s 737’0]

>Factorh:h1><h2><---><hn

Motivation

The following problem was given to us by Jiirgen Gerhard [2]:

19 35 23
f = 7@21 — V11V5V2¢5¢4 — 2V 5e1c9 — 6V 2¢304 + 50(2) + §c§+

7 11 15 10681741
50% — \/7\/5\/5(:302 + 76% — \/gﬂcocl + ?cg — 1035

Here L = Q(v/2,v3,V5,V7,4/11) is a number field and f € L]cy,...,c5]. The norm of f
1s degree 64 1n ¢, c1, ¢9, c3, ¢4, c; and has about 3 million terms and the integers in the rational
coefficients have over 200 digits so it is not easy to compute norm( f) let alone factor it!!
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Observation: If we evaluate f at (c; = 1,¢9 = 2,¢3 = 3, ¢4 = 4, c5 = 5) the resulting polynomial
can be proven irreducible using Trager’s algorithm. In general we have:

Theorem 1. Let f € L|xy,...,xy| and B € 7F+tv=1 be an evaluation point for all the parameters
and variables except x1. If lc;:,(f)(3) # 0 then

f(x1,8) € L(B)|x1] is irreducible = f is irreducible.

Efactor: Our New Algorithm

Our 1dea is to use polynomial evaluation and interpolation using Hensel lifting. To factor a uni-
variate polynomial we will use Trager’s algorithm. Things to be done:

¢ In order to use Hensel lifting we need to determine the true leading coefficient of each factor f;.

e How to avoid the fractions in Q and fractions in the parameters ¢1, ..., ?;. when doing Hensel
lifting? Because doing arithmetic with fractions 1s expensive.

To find the leading coefficient of each factor we will use a trick similar to Wang’s 1dea [3] to
factoring polynomials over Q.

Example 2. Let o = v/t and
f= (—ty2a+2y3+3t2—toz—6yoz+2y) 22+ (4y — 2ta) z° + (y2—3a+1)x+2.

For evaluation point 3 = (t = 5,y = 7) using Trager’s algorithm we get:

7(8) = (775 — 202 <m2+1_4+3&) (H 0 | 6 )

71 71 291 " 2455

The denominators are di = 71 and doy = 491. We factor lc,(f) recursively:
leo(f) =1 x o= (y> —3a+1) (2y — ta)

We compute

1 0 3 , L1405
———=—+f+——a and ——=—+—a.
[1(3) 491 ' 2455 b(B) 71 71

We can see that [ must be the leading coefficient of fo and lo must be the leading coefficient of f;.

To avoid fractions in Q, we will do Hensel lifting modulo a machine prime. To lift the integer
coefficients of each factor, we use a new algorithm called Sparse p-adic Lifting:

f=fix fomodpande = f — fi X f5

v

Find 01,00 f = (fi + o1p) X (f2 + g9p) mod p = g = fi09 + foo

%

g1 and o9 have the same terms as f; and f, respectively w.h.p.

\

f1o9 4+ foo1 with unknown coefficients for o; and o9

\

Update f1 .= fi+opand fo .= fo+op= f=fi X frmodp

€ =

Solve the linear system obtained from ’

Mampiesolt MITACS

Mathematics « Modeling  Simulation

Algorithm Efactor:

1 Factor the leading coefficient of the input polynomial f recursively.

2 Find a random evaluation point 3 for every parameter and variable except the main variable ;.
3 Factor f(() (univariate) using Trager’s algorithm.

4 Find the true leading coefficient of each univariate factor.

5 Use Hensel Lifting modulo a machine prime p.

6 Use sparse p-adic lifting to lift the integer coefficients.

Benchmarks
#| n r k d #f Trager Efactor GCD
1| 2 2 | 17 6408 5500 25991 47.47
2| 2 2 1 22 | 12008 37800 296.74 56.90
31 2 2 2 10 34 120 0.22 0.16
4, 2 2 2 12 34 571 0.31 0.19
5/ 3 2 2 10 69 5953 0.27 0.29
6| 6 5 0 4 46 > 50000 88.43 1.93
7 5 2 1 10 | 17052 > 50000 58.41 57.75
8 1 1 2 102 028 16427 72.10 7.71

Table 1: Timings (in CPU seconds)
Applications

Polynomial factorization has many applications. It 1s especially used for solving systems of poly-
nomial equations. Another application of factorization is in coding theory for developing error-
correcting codes. Here 1s an example from robotics:

length [

This picture is taken from [1]. Here [{, [, [3 and [4 are variables, ¢; = cos(#]), cog = cos(f2) and
c3 = cos(f3) are parameters and s; = 4/1 — c%, So = 4/1— c% and s3 = /1 — c% are the field
extensions. The algebraic function field is L = Q(cy, 9, ¢3)(s1, S9, S3).
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